

Lecture Notes in Computer Science 3622
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Varmo Vene Tarmo Uustalu (Eds.)

Advanced
Functional
Programming

5th International School, AFP 2004
Tartu, Estonia, August 14 – 21, 2004
Revised Lectures

13

Volume Editors

Varmo Vene
University of Tartu
Department of Computer Science
J. Liivi 2, EE-50409 Tartu, Estonia
E-mail: varmo@cs.ut.ee

Tarmo Uustalu
Institute of Cybernetics
Akadeemia tee 21, EE-12618 Tallinn, Estonia
E-mail: tarmo@cs.ioc.ee

Library of Congress Control Number: 2005931987

CR Subject Classification (1998): D.1.1, D.1, D.3, F.3, D.2

ISSN 0302-9743
ISBN-10 3-540-28540-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-28540-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11546382 06/3142 5 4 3 2 1 0

Preface

This volume contains the revised lecture notes corresponding to nine of the
lecture courses presented at the 5th International School on Advanced Functional
Programming, AFP 2004, held in Tartu, Estonia, August 14–21, 2004.

The goal of the AFP schools is to inform the wide international communities
of computer science students and software production professionals about the
new and important developments in the area of functional programming. The
schools put a special emphasis on practical applications of advanced techniques.
The Tartu school was preceded by four earlier schools in B̊astad, Sweden (1995,
LNCS 925), Olympia, WA, USA (1996, LNCS 1129), Braga, Portugal (1998,
LNCS 1608) and Oxford, UK (2002, LNCS 2638).

The scientific programme of AFP 2004 consisted of five preparatory (“in-
termediate”) courses, given by John Hughes (Chalmers University of Technol-
ogy, Göteborg, Sweden), Doaitse Swierstra (Universiteit Utrecht, The Nether-
lands) and Rinus Plasmeijer (Radboud Universiteit Nijmegen, The Netherlands),
and nine regular (“advanced”) courses, presented by Atze Dijkstra (Universiteit
Utrecht, The Netherlands), Doaitse Swierstra, John Hughes, Conor McBride
(University of Nottingham, UK), Alberto Pardo (Universidade de la República,
Montevideo, Uruguay), Rinus Plasmeijer, Bernard Pope (University of Mel-
bourne, Australia), Peter Thiemann (Universität Freiburg, Germany), and Si-
mon Thompson (University of Kent, UK). There was also a student session.

The school attracted a record number of 68 participants from 16 countries
(inclusive of the lecturers and organizers).

This volume contains the notes for the advanced courses. Following the school,
the lecturers revised the notes they had prepared for the school. The revised
notes were each carefully checked by two or three second readers selected from
among the most qualified available and then revised once more by the lecturers.
We are proud to commend the final texts to everyone wishing to acquire first-
hand knowledge about some of the exciting and trendsetting developments in
functional programming.

We are grateful to our sponsors, to the Faculty of Mathematics and Com-
puter Science of the University of Tartu, to the lecturers and the second readers
for their hard work on the oral presentations, and the notes, and to all our
participants. You made the school what it was.

Tartu and Tallinn, June 2005 Varmo Vene
Tarmo Uustalu

Organization

Host Institution

AFP 2004 was organized by the Department of Computer Science of the Univer-
sity of Tartu in cooperation with the Center for Dependable Computing (CDC),
an Estonian center of excellence in research.

Programme Committee

Varmo Vene (University of Tartu, Estonia) (chairman)
Johan Jeuring (Universiteit Utrecht, The Netherlands)
Tarmo Uustalu (Institute of Cybernetics, Tallinn, Estonia)

Organizing Committee

Varmo Vene (University of Tartu, Estonia) (chairman)
Härmel Nestra (University of Tartu, Estonia)
Vesal Vojdani (University of Tartu, Estonia)
Tarmo Uustalu (Institute of Cybernetics, Tallinn, Estonia)

Second Readers

Venanzio Capretta (University of Ottawa, Canada)
James Cheney (University of Edinburgh, UK)
Catarina Coquand (Chalmers University of Technology, Sweden)
Jeremy Gibbons (University of Oxford, UK)
Thomas Hallgren (Oregon Graduate Institute, Portland, OR, USA)
Michael Hanus (Christian-Albrechts-Universität zu Kiel, Germany)
Johan Jeuring (Universiteit Utrecht, The Netherlands)
Jerzy Karczmarczuk (Université Caen, France)
Ralf Lämmel (CWI, Amsterdam, The Netherlands)
Andres Löh (Universiteit Utrecht, The Netherlands)
Nicolas Magaud (University of New South Wales, Sydney, Australia)
Simon Marlow (Microsoft Research, Cambridge, UK)
Ross Paterson (City University, London, UK)
Simon Peyton Jones (Microsoft Research, Cambridge, UK)
Colin Runciman (University of York, UK)
Tim Sheard (Portland State University, Portland, OR, USA)
Joost Visser (Universidade do Minho, Braga, Portugal)
Eric Van Wyk (University of Minnesota, Minneapolis, MN, USA)

VIII Organization

Sponsoring Institutions

Tiigriülikool programme of the Estonian Information Technology Foundation

National Centers of Excellence programme of the Estonian Ministry of Education
and Research

EU FP5 IST programme via the thematic network project APPSEM II

Table of Contents

Typing Haskell with an Attribute Grammar
Atze Dijkstra, S. Doaitse Swierstra . 1

Programming with Arrows
John Hughes . 73

Epigram: Practical Programming with Dependent Types
Conor McBride . 130

Combining Datatypes and Effects
Alberto Pardo . 171

GEC: A Toolkit for Generic Rapid Prototyping of Type Safe Interactive
Applications

Peter Achten, Marko van Eekelen, Rinus Plasmeijer,
Arjen van Weelden . 210

A Functional Shell That Operates on Typed and Compiled Applications
Rinus Plasmeijer, Arjen van Weelden . 245

Declarative Debugging with Buddha
Bernard Pope . 273

Server-Side Web Programming in WASH
Peter Thiemann . 309

Refactoring Functional Programs
Simon Thompson . 331

Author Index . 359

Typing Haskell with an Attribute Grammar

Atze Dijkstra and S. Doaitse Swierstra

Institute of Information and Computing Sciences,
Utrecht University P.O.Box 80.089,

3508 TB Utrecht, Netherlands
{atze, doaitse}@cs.uu.nl

Abstract. A great deal has been written about type systems. Much less has been
written about implementing them. Even less has been written about implementa-
tions of complete compilers in which all aspects come together. This paper fills
this gap by describing the implementation of a series of compilers for a simplified
variant of Haskell. By using an attribute grammar system, aspects of a compiler
implementation can be described separately and added in a sequence of steps,
thereby giving a series of increasingly complex (working) compilers. Also, the
source text of both this paper and the executable compilers come from the same
source files by an underlying minimal weaving system. Therefore, source and
explanation is kept consistent.

Haskell98 [31] is a complex language, not to mention its more experimental incarna-
tions. Though also intended as a research platform, realistic compilers for Haskell [1]
have grown over the years and understanding and experimenting with those compilers
is not an easy task. Experimentation on a smaller scale usually is based upon relatively
simple and restricted implementations [20], often focusing only on a particular aspect
of the language and/or its implementation. This paper aims at walking somewhere be-
tween this complexity and simplicity by

– Describing the implementation of essential aspects of Haskell (or any other (func-
tional) programming language), hence the name Essential Haskell (EH) used for
simplified variants of Haskell1 in these notes.

– Describing these aspects separately in order to provide a better understanding.
– Adding these aspects on top of each other in an incremental way, thus leading to

a sequence of compilers, each for a larger subset of complete Haskell (and exten-
sions).

– Using tools like the Utrecht University Attribute Grammar (UUAG) system [3],
hereafter referred to as the AG system, to allow for separate descriptions for the
various aspects.

1 The ’E’ in EH might also be expanded to other aspects of the compiler, like being an Example.

1–72, 2005.

1 Introduction and Overview

,

V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

The remaining sections of this introduction will expand on this by looking at the inten-
tions, purpose and limitations of these notes in more detail. This is followed by a short
description of the individual languages for which we develop compilers throughout
these notes. The last part of the introduction contains a small tutorial on the AG system
used in these notes. After the introduction we continue with discussing the implementa-
tion of the first three compilers (sections 2, 3 and 4) out of a (currently) sequence of ten
compilers. On the web site [11] for this project the full distribution of the code for these
compilers can be found. We conclude these notes by reflecting upon our experiences
with the AG system and the creation of these notes (section 5).

1.1 Purpose

For whom is this material intended?

– For students who wish to learn more about the implementation of functional lan-
guages. This paper also informally explains the required theory, in particular about
type systems.

– For researchers who want to build (e.g.) a prototype and to experiment with ex-
tensions to the type system and need a non-trivial and realistic starting point. This
paper provides documentation, design rationales and an implementation for such a
starting point.

– For those who wish to study a larger example of the tools used to build the com-
pilers in these notes. We demonstrate the use of the AG system, which allows us to
separately describe the various aspects of a language implementation. Other tools
for maintaining consistency between different versions of the resulting compilers
and the source code text included in these notes are also used, but will not be dis-
cussed.

For this intended audience these notesprovide:

– A description of the implementation of a type checker/inferencer for a subset of
Haskell. We describe the first three languages of a (currently) sequence of ten, that
end in a full implementation of an extended Haskell.

– A description of the semantics of Haskell, lying between the more formal [16,14]
and more implementation oriented [21,33] and similar to other combinations of
theory and practice [34].

– A gradual instead of a big bang explanation.
– Empirical support for the belief that the complexity of a compiler can be managed

by splitting the implementation of the compiler into separate aspects.
– A working combination of otherwise usually separately proven or implemented

features.

We will come back to this in our conclusion (see section 5).

2 A. Dijkstra and S.D. Swierstra

– We do not discuss extensions to Haskell implemented in versions beyond the last
version presented in these notes. See section 1.3 for a preciser description of what
can and cannot be found in these notes with respect to Haskell features.

– We concern ourselves with typing only. Other aspects, like pretty printing and pars-
ing, are not discussed. However, the introduction to the AG system (see section 1.4)
gives some examples of the pretty printing and the interaction between parsing, AG
code and Haskell code.

– We do not deal with type theory or parsing theory as a subject on its own. This
paper is intended to describe “how to implement” and will use theory from that
point of view. Theoretical aspects are touched upon from a more intuitive point of
view.

Although informally and concisely introduced where necessary, familiarity with the
following will make reading and understanding these notes easier:

– Functional programming, in particular using Haskell
– Compiler construction in general
– Type systems, λ-calculus
– Parser combinator library and AG system [3,38]

For those not familiar with the AG system a short tutorial has been included at the end of
this introduction (see section 1.4). It also demonstrates the use of the parser combinators
used throughout the implementation of all EH versions.

We expect that by findinga balance between theory and implementation,we serveboth
those who want to learn and those who want to do research. It is also our belief that by
splitting the big problem into smaller aspects the combination can be explained in an
easier way.

In thefollowing sectionswegive examples of the Haskell features present in the series
of compilers described in the following chapters. Only short examples are given, so the
reader gets an impression of what is explained in more detail and implemented in the
relevant versions of the compiler.

Though all compilers described in these notes deal with a different issue, they all have
in common that they are based on the λ-calculus, most of the time using the syntax
and semantics of Haskell. The first version of our series of compilers therefore accepts
a language that most closely resembles the λ-calculus, in particular typed λ-calculus
extended with let expressions and some basic types and type constructors such as Int,
Char and tuples.

We restrict ourselves in thefollowing ways, partly because of space limitations,partly
by design:

Typing Haskell with an Attribute Grammar 3

1.2 A Short Tour

EH version 1: λ-calculus. An EH program is a single expression, contrary to a Haskell
program which consists of a set of declarations forming a module.

let i :: Int
i = 5

in i

All variables need to be typed explicitly; absence of an explicit type is considered to
be an error. The corresponding compiler (EH version 1, section 2) checks the explicit
types against actual types.

Besides the basictypes Int and Char,compositetypescanbe formed by building tuples
and defining functions:

let id :: Int → Int
id = λx→ x
fst :: (Int, Char)→ Int
fst = λ(a, b)→ a

in id (fst (id 3, ’x’))

Functions accept one parameter only, which can be a pattern. All types are monomor-
phic.

EH version 2: Explicit/implicit typing. The next version (EH version 2, section 3) no
longer requires the explicit type specifications, which thus may have to be inferred by
the compiler.

The reconstructed type information is monomorphic, for example the identity function
in:

let id = λx→ x
in let v = id 3

in id

is inferred to have the type id :: Int → Int.

EH version 3: Polymorphism. The third version (EH version 3, section 4) performs
standard Hindley-Milner type inferencing [8,9] which also supports parametric poly-
morphism. For example,

let id = λx→ x
in id 3

is inferred to have type id :: ∀ a.a→ a.

4 A. Dijkstra and S.D. Swierstra

As mentioned before, only a subset of the full sequence of compilers is described in
these notes. Currently, as part of an ongoing work [11], in the compilers following the
compilers described in these notes, the following Haskell features are dealt with:

EH 4. Quantifiers everywhere: higher ranked types [36,32,7,28] and existentials
[30,25,27]. See also the longer version of these notes handed out during the AFP04
summerschool [13].

EH 5. Data types.
EH 6. Kinds, kind inference, kind checking, kind polymorphism.
EH 7. Non extensible records, subsuming tuples.
EH 8. Code generation for a GRIN (Graph Reduction Intermediate Notation) like

backend [6,5].
EH 9. Class system, explicit implicit parameters [12].
EH 10. Extensible records [15,22].

Also missing are features which fall in the category syntactic sugar, programming in the
large and the like. Haskell incorporates many features which make programming easier
and/or manageable. Just to mention a few:

– Binding group analysis
– Syntax directives like infix declarations
– Modules [10,37].
– Type synonyms
– Syntactic sugar for if, do, list notation and comprehension.

We have deliberately not dealt with these issues. Though necessary and convenient we
feel that these features should be added after all else has been dealt with, so as not to
make understanding and implementating essential features more difficult.

The remaining part of the introduction contains a small tutorial on the AG system. The
tutorial explains the basic features of the AG system. The explanation of remaining
features is postponed to its first use throughout the main text. These places are marked
with AG. The tutorial can safely be skipped if the reader is already familiar with the
AG system.

Haskell and Attribute Grammars (AG). Attribute grammars can be mapped onto func-
tional programs [23,19,4]. Vice versa, the class of functional programs (catamorphisms

Typing Haskell with an Attribute Grammar 5

1.3 Haskell Language Elements ot Described

1.4 An AG Mini Tutorial

N

which additionally allows program fragments to be described separately. The AG com-
piler gathers these fragments, combines these fragments, and generates a corresponding
Haskell program.

In this AG tutorial we start with a small example Haskell program (of the right form)
to show how the computation described by this program can be expressed in the AG
notation and how the resulting Haskell program generated by the AG compiler can be
used. The ‘repmin’ problem [4] is used for this purpose. A second example describing a
‘pocket calculator’ (that is, expressions) focusses on more advanced features and typical
AG usage patterns.

Repmin a la Haskell. Repmin stands for “replacing the integer valued leaves of a tree
by the minimal integer value found in the leaves”. The solution to this problem requires
two passes over a tree structure, computing the miminum and computing a new tree
with the minimum as its leaves respectively. It is often used as the typical example of
a circular program which lends itself well to be described by the AG notation. When
described in Haskell it is expressed as a computation over a tree structure:

data Tree = Tree Leaf Int
| Tree Bin Tree Tree

deriving Show

The computation itself simultaneously computes the minimum of all integers found in
the leaves of the tree and the new tree with this minimum value. The result is returned
as a tuple computed by function r:

repmin :: Tree→ Tree
repmin t

= t′
where (t′, tmin) = r t tmin

r (Tree Leaf i) m = (Tree Leaf m , i)
r (Tree Bin lt rt) m = (Tree Bin lt′ rt′, lmin ‘min‘ rmin)

where (lt′, lmin) = r lt m
(rt′, rmin) = r rt m

We can use this function in some setting, for example:

tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = repmin tr

main :: IO ()
main = print tr′

The resulting program produces the following output:

Tree_Bin (Tree_Leaf 3) (Tree_Bin (Tree_Leaf 3) (Tree_Leaf 3))

[39]) mapped onto can be described by attribute grammars. The AG system exploits this
correspondence by providing a notation (attribute grammar) for computations over trees

6 A. Dijkstra and S.D. Swierstra

seem we have a cyclic definition. However, the real dependency is not on the tupled
result of r but on its elements because it is the element tmin of the result tuple which
is passed back and not the tuple itself. The elements are not cyclically dependent so
Haskell’s laziness prevents a too eager computation of the elements of the tuple which
might otherwise have caused an infinite loop during execution. Note that we have two
more or less independent computations that both follow the tree structure, and a weak
interaction, when passing the tmin value back in the tree.

Repmin a la AG. The structure of repmin is similar to the structure required by a com-
piler. A compiler performs several computations over an abstract syntax tree (AST), for
example for computing its type and code. This corresponds to the Tree structure used by
repmin and the tupled results. In the context of attribute grammars the elements of this
tuple are called attribute’s. Occasionaly the word aspect is used as well, but an aspect
may also refer to a group of attributes associated with one particular feature of the AST,
language or problem at hand.

Result elements are called synthesized attributes. On the other hand, a compiler may
also require information that becomes available at higher nodes in an AST to be avail-
able at lower nodes in an AST. The m parameter passed to r in repmin is an example of
this situation. In the context of attribute grammars this is called an inherited attribute.

Using AG notation we first define the AST corresponding to our problem (for which
the complete compilable solution is given in Fig. 1):

DATA Tree
| Leaf int : {Int }
| Bin lt : Tree

rt : Tree

The DATA keyword is used to introduce the equivalent of Haskell’s data type. A
DATA〈node〉 defines a node 〈node〉 (or nonterminal) of an AST. Its alternatives, enu-
merated one by one after the vertical bar |, are called variants, productions. The term
constructor is occasionally used to stress the similarity with its Haskell counterpart.
Each variant has members, called children if they refer to other nodes of the AST and
fields otherwise. Each child and field has a name (before the colon) and a type (after
the colon). The type may be either another DATA node (if a child) or a monomorphic
Haskell type (if a field), delimited by curly braces. The curly braces may be omitted if
the Haskell type is a single identifier. For example, the DATA definition for the repmin
problem introduces a node (nonterminal) Tree, with variants (productions) Leaf and
Bin. A Bin has children lt and rt of type Tree. A Leaf has no children but contains only
a field int holding a Haskell Int value.

Typing Haskell with an Attribute Grammar 7

The computation of the new tree requires the minimum. This minimum is passed as a
parameter m to r at the root of the tree by extracting it from the result of r. The result
tuple of the invocation r t tmin depends on itself via the minimum tmin so it would

DATA Tree
| Leaf int : {Int }
| Bin lt : Tree

rt : Tree

ATTR Tree [|| min : Int]

SEM Tree
| Leaf lhs . min = @int
| Bin lhs . min = @lt.min ‘min‘ @rt.min

ATTR Tree [rmin : Int ||]
-- The next SEM may be generated automatically

SEM Tree
| Bin lt . rmin = @lhs.rmin

rt . rmin = @lhs.rmin

DATA Root
| Root tree : Tree

SEM Root
| Root tree. rmin = @tree.min

ATTR Root Tree [|| tree : Tree]

SEM Tree
| Leaf lhs . tree = Tree Leaf @lhs.rmin
| Bin lhs . tree = Tree Bin @lt.tree @rt.tree

-- The next SEM may be generated automatically

SEM Root
| Root lhs . tree = @tree.tree

DERIVING Tree : Show

{
tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = sem Root (Root Root tr)

main :: IO ()
main = print tr′
}

ATTR Tree [|| min : Int]

SEM Tree
| Leaf lhs.min = @int
| Bin lhs.min = @lt.min ‘min‘ @rt.min

8 A. Dijkstra and S.D. Swierstra

Fig. 1. Full AG specification of repmin

The keyword ATTR is used to declare an attribute for a node, for instance the synthe-
sized attribute min:

A synthesized attribute is declared for the node after ATTR. Multiple declarations of
the same attribute for different nonterminals can be grouped on one line by enumerat-
ing the nonterminals after the ATTR keyword, separated by whitespace. The attribute
declaration is placed inside the square brackets at one or more of three different pos-
sible places. All attributes before the first vertical bar | are inherited, after the last bar
synthesized, and in between both inherited and synthesized. For example, attribute min
is a result and therefore positioned as a synthesized attribute, after the last bar.

Rules relating an attribute to its value are introduced using the keyword SEM. For
each production we distinguish a set of input attributes, consisting of the synthesized
attributes of the children referred to by @〈child〉.〈attr〉 and the inherited attributes of
the parent referred to by @lhs.〈attr〉. For each output attribute we need a rule that
expresses its value in terms of input attributes and fields.

The computation for a synthesized attributefora node hasto be defined for each variant
individually as it usually will differ between variants. Each rule is of the form

| 〈variant〉 〈node〉.〈attr〉 = 〈Haskell expr〉

If multiple rules are declared for a 〈variant〉 of a node, the 〈variant〉 part may be shared.
The same holds for multiple rules for a child (or lhs) of a 〈variant〉, the child (or lhs)
may then be shared.

The text representing the computation for an attribute has to be a Haskell expression and
will end up almost unmodified in the generated program, without any form of checking.
Only attribute and field references, starting with a @, have meaning to the AG system.
The text, possibly stretching over multiple lines, has tobe indentedat least as far as its
first line. Otherwise it is to be delimited by curly braces.

The basic form of an attribute reference is @〈node〉.〈attr〉 referring to a synthesized
attribute 〈attr〉 of child node 〈node〉. For example, @lt.min refers to the synthesized
attribute min of child lt of the Bin variant of node Tree.

The 〈node〉. part of @〈node〉.〈attr〉may be omitted. For example, min for the Leaf
alternative is defined in terms of @int. In that case @〈attr〉 refers to a locally (to
a variant for a node) declared attribute, or to the field with the same name as defined
in the DATA definition for that variant. This is the case for the Leaf variant’s int. We
postpone the discussion of locally declared attributes.

The minimum value of repmin passed as a parameter corresponds to an inherited at-
tribute rmin:

ATTR Tree [rmin : Int ||]

The value of rmin is straightforwardly copied to its children. This “simply copy” be-
havior occurs so often that we may omit its specification. The AG system uses so called
copy rules to automically generate code for copying if the value of an attribute is not
specified explicitly. This is to prevent program clutter and thus allows the programmer

Typing Haskell with an Attribute Grammar 9

to focus on programming the exception instead of the usual. We will come back to this
later; for now it suffices to mention that all the rules for rmin might as well have been
omitted.

The original repmin function did pass the minimum value coming out r back into r
itself. This did happen at the top of the tree. Similarly we define a Root node sitting on
top of a Tree:

DATA Root
| Root tree : Tree

At the root the min attribute is passed back into the tree via attribute rmin:

SEM Root
| Root tree.rmin = @tree.min

The value of rmin is used to construct a new tree:

ATTR Root Tree [|| tree : Tree]

SEM Tree
| Leaf lhs.tree = Tree Leaf @lhs.rmin
| Bin lhs.tree = Tree Bin @lt.tree @rt.tree

SEM Root
| Root lhs.tree = @tree.tree

For each DATA the AG compiler generates a corresponding Haskell data type declara-
tion. For each node 〈node〉 a data type with the same name 〈node〉 is generated. Since
Haskell requires all constructors to be unique, each constructor of the data type gets a
name of the form 〈node〉 〈variant〉.

In our example the constructed tree is returnedas theoneandonlyattributeof Root. It
can be shown if we tell the AG compiler to make the generated data type an instance of
the Show class:

DERIVING Tree : Show

Similarly to the Haskell version of repmin we can now show the result of the attribute
computation as a plain Haskell value by using the function sem Root generated by the
AG compiler:

{
tr = Tree Bin (Tree Leaf 3) (Tree Bin (Tree Leaf 4) (Tree Leaf 5))
tr′ = sem Root (Root Root tr)

main :: IO ()
main = print tr′
}

10 A. Dijkstra and S.D. Swierstra

Because this part is Haskell code it has to be delimited by curly braces, indicating that
the AG compiler should copy it unchanged into the generated Haskell program.

In order to understand what is happening here, we take a look at the generated Haskell
code. For the above example the following code will be generated (edited to remove
clutter):

data Root = Root_Root (Tree)

-- semantic domain

type T_Root = ((Tree))

-- cata

sem_Root :: (Root) -> (T_Root)

sem_Root ((Root_Root (_tree)))

= (sem_Root_Root ((sem_Tree (_tree))))

sem_Root_Root :: (T_Tree) -> (T_Root)

sem_Root_Root (tree_) =

let (_treeImin,_treeItree) = (tree_ (_treeOrmin))

(_treeOrmin) = _treeImin

(_lhsOtree) = _treeItree

in (_lhsOtree)

data Tree = Tree_Bin (Tree) (Tree)

| Tree_Leaf (Int)

deriving (Show)

-- semantic domain

type T_Tree = (Int) -> ((Int),(Tree))

-- cata

sem_Tree :: (Tree) -> (T_Tree)

sem_Tree ((Tree_Bin (_lt) (_rt)))

= (sem_Tree_Bin ((sem_Tree (_lt))) ((sem_Tree (_rt))))

sem_Tree ((Tree_Leaf (_int))) = (sem_Tree_Leaf (_int))

sem_Tree_Bin :: (T_Tree) -> (T_Tree) -> (T_Tree)

sem_Tree_Bin (lt_) (rt_) =

\ _lhsIrmin ->

let (_ltImin,_ltItree) = (lt_ (_ltOrmin))

(_rtImin,_rtItree) = (rt_ (_rtOrmin))

(_lhsOmin) = _ltImin ‘min‘ _rtImin

(_rtOrmin) = _lhsIrmin

(_ltOrmin) = _lhsIrmin

(_lhsOtree) = Tree_Bin _ltItree _rtItree

in (_lhsOmin,_lhsOtree)

sem_Tree_Leaf :: (Int) -> (T_Tree)

sem_Tree_Leaf (int_) =

\ _lhsIrmin ->

let (_lhsOmin) = int_

(_lhsOtree) = Tree_Leaf _lhsIrmin

in (_lhsOmin,_lhsOtree)

Typing Haskell with an Attribute Grammar 11

In general, generated code is not the most pleasant2 of prose to look at, but we will have
to use the generated functions in order to access the AG computations of attributes from
the Haskell world. The following observations should be kept in mind when doing so:

– For node 〈node〉 also a type T 〈node〉 is generated, describing the function type
that maps inherited to synthesized attributes. This type corresponds one-to-one to
the attributes defined for 〈node〉: inherited attributes to parameters, synthesized at-
tributes to elements of the result tuple (or single type if exactly one synthesized
attribute is defined).

– Computation of attribute values is done by semantic functions with a name of the
form sem 〈node〉 〈variant〉. These functions have exactly the same type as their
constructor counterpart of the generated data type. The only difference lies in the
parameters which are of the same type as their constructor counterpart, but prefixed
with T . For example, data constructor Tree Bin :: Tree→ Tree→ Tree corresponds
to the semantic function sem Tree Bin :: (T Tree) → (T Tree)→ (T Tree).

– A mapping from the Haskell data type to the corresponding semantic function is
available with the name sem 〈node〉.

In the Haskell world one now can follow different routes to compute the attributes:

– First construct a Haskell value of type 〈node〉, then apply sem 〈node〉 to this value
and the additionally required inherited attributes values. The given function main
from AG variant of repmin takes this approach.

– Circumvent the construction of Haskell values of type 〈node〉 by using the semantic
functions sem 〈node〉 〈variant〉 directly when building the AST instead of the data
constructor 〈node〉 〈variant〉 (This technique is called deforestation [42].).

In both cases a tuple holding all synthesized attributes is returned. Elements in the
tuple are sorted lexicographically on attribute name, but it still is awkward to extract
an attribute via pattern matching because the size of the tuple and position of elements
changes with adding and renaming attributes. For now, this is not a problem as sem Root
will only return one value, a Tree. Later we will see the use of wrapper functions to pass
inherited attributes and extract synthesized attributes via additional wrapper data types
holding attributes in labeled fields.

Parsing directly to semantic functions. The given main function uses the first approach:
construct a Tree, wrap it inside a Root, and apply sem Root to it. The following example
takes the second approach; it parses some input text describing the structure of a tree
and directly invokes the semantic functions:

2 In addition, because generated code can be generated differently, one cannot count on it being
generated in a specific way. Such is the case here too, this part of the AG implementation may
well change in the future.

12 A. Dijkstra and S.D. Swierstra

pRepmin :: IsParser p Char ⇒ p T Root
pRepmin = pRoot

where pRoot = sem Root Root 〈$〉 pTree
pTree = sem Tree Leaf 〈$〉 pInt

〈|〉 sem Tree Bin 〈$ pSym ’B’ 〈∗〉 pTree 〈∗〉 pTree
pInt = (λc→ ord c − ord ’0’) 〈$〉 ’0’ 〈..〉 ’9’

The parser recognises the letter ’B’ as a Bin alternative and a single digit as a Leaf .
Fig. 2 gives an overview of the parser combinators which are used [38]. The parser is
invoked from an alternative implementation of main:

main :: IO ()
main = do tr ← parseIOMessage show pRepmin "B3B45"

print tr

We will not discuss this alternative further nor will we discuss this particular variant of
parser combinators. However, this approach is taken in the rest of these notes wherever
parsing is required.

Combinator Meaning Result
p 〈∗〉 q p followed by q result of p applied to result of q
p 〈|〉 q p or q result of p or result of q
pSucceed r empty input ε r
f 〈$〉 p ≡ pSucceed f 〈∗〉 p
pKey "x" symbol/keyword x "x"

p 〈∗∗〉 q p followed by q result of q applied to result of p
p ‘opt‘ r ≡ p 〈|〉 pSucceed r
p 〈??〉 q ≡ p 〈∗∗〉 q ‘opt‘ id
p 〈∗ q, p ∗〉 q, f 〈$ p variants throwing away

result of angle missing
side

pFoldr listAlg p sequence of p’s foldr c n (result of all p’s)
pList p pFoldr ((:), []) p
pChainr s p p’s (>1) separated by s’s result of s’s applied to results of p’s aside

More features and typical usage: a pocket calculator. We will continue with looking at
a more complex example, a pocket calculator which accepts expressions. The calculator
prints a pretty printed version of the entered expression, its computed value and some
statistics (the number of additions performed). An interactive terminal session of the
pocket calculator looks as follows:

instance Symbol Char

Typing Haskell with an Attribute Grammar 13

Fig. 2. Parser combinators

Expr=’3+4’, val=7, add count thus far=1

Enter expression: [a=3+4:a+a]

Expr=’[a=3+4:a+a]’, val=14, add count thus far=3

Enter expression: ˆCexpr: interrupted

$

This rudimentary calculator allows integer values, their addition and binding to
identifiers. Parsing is character based, no scanner is used to transform raw text into
tokens. No whitespace is allowed and a let expression is syntactically denoted by
[<nm>=<expr>:<expr>].

The example will allow us to discuss more AG features as well as typical use of AG.
We start with integer constants, addition followed by an attribute computation for the
pretty printing:

DATA AGItf
| AGItf expr : Expr

DATA Expr
| IConst int : {Int }
| Add e1 : Expr e2 : Expr

SET AllNT = AGItf Expr

The root of the tree is now called AGItf to indicate (as a naming convention) that this is
the place where interfacing between the Haskell world and the AG world takes place.

The definition demonstrates the use of the SET keyword which allows the naming of
a group of nodes. This name can later be used to declare attributes for all the named
group of nodes at once.

The computation of a pretty printed representation follows the same pattern as the
computation of min and tree in the repmin example, because of its compositional and
bottom-up nature. The synthesized attribute pp is synthesized from the values of the pp
attribute of the children of a node:

ATTR AllNT [|| pp : PP Doc]

SEM Expr
| IConst lhs.pp = pp @int
| Add lhs.pp = @e1.pp >‖< "+" >‖< @e2.pp

The pretty printing uses a pretty printing library with combinators for values of type
PP Doc representing pretty printed documents. The library is not further discussed
here; an overview of some of the available combinators can be found in Fig. 3.

As a next step we add let expressions and use of identifiersin expressions.This demon-
strates an important feature of the AG system: we may introduce new alternatives for
a 〈node〉 as well as may introduce new attribute computations in a separate piece of
program text. We first add new AST alternatives for Expr:

$ build/bin/expr

Enter expression: 3+4

14 A. Dijkstra and S.D. Swierstra

Combinator Result
p1 >‖< p2 p1 besides p2, p2 at the right
p1 >#< p2 same as >‖< but with an additional space in between
p1 >−< p2 p1 above p2

pp parens p p inside parentheses
text s string s as PP Doc
pp x pretty print x (assuming instance PP x) resulting in a PP Doc

DATA Expr
| Let nm : {String} val : Expr body : Expr
| Var nm : {String}

One should keep in mind that the exensibility offered is simplistic of nature, but sur-
prisingly flexible at the same time. The idea is that node variants, attribute declarations
and attribute rules for node variants can all occur textually separated. The AG com-
piler gathers all definitions, combines, performs several checks (e.g. are attribute rules
missing), and generates the corresponding Haskell code. All kinds of declarations can
be distributed over several text files to be included with a INCLUDE directive (not
discussed any further).

Anyaddition ofnew nodevariants requiresalso thecorrespondingdefinitionsofalready
introduced attributes:

SEM Expr
| Let lhs.pp = "[" >‖< @nm >‖< "=" >‖< @val.pp >‖< ":" >‖< @body.pp >‖< "]"
| Var lhs.pp = pp @nm

The use of variables in the pocket calculator requires us to keep an administration of
values bound to variables. An association list is used to provide this environmental and
scoped information:

ATTR Expr [env : { [(String, Int)]} ||]
SEM Expr
| Let body.env = (@nm, @val.val) : @lhs.env

SEM AGItf
| AGItf expr .env = []

The scope is enforced by extending the inherited attribute env top-down in the AST.
Note that there is no need to specify a value for @val.env because of the copy rules
discussed later. In the Let variant the inherited environment, which is used for evaluating
the right hand sided of the bound expression, is extended with the new binding, before
being used as the inherited env attribute of the body. The environment env is queried
when the value of an expression is to be computed:

Typing Haskell with an Attribute Grammar 15

Fig. 3. Pretty printing combinators

ATTR AllNT [|| val : Int]

SEM Expr
| Var lhs.val = maybe 0 id (lookup @nm @lhs.env)
| Add lhs.val = @e1.val + @e2.val
| Let lhs.val = @body.val
| IConst lhs.val = @int

The attribute val holds this computed value. Because its value is needed in the ‘out-
side’ Haskell world it is passed through AGItf (as part of SET AllNT) as a synthesized
attribute. This is also the case for the previously introduced pp attribute as well as the
following count attribute used to keep track of the number of additions performed.
However, the count attribute is also passed as an inherited attribute. Being both inher-
ited and synthesized it is defined between the two vertical bars in the ATTR declaration
for count:

ATTR AllNT [| count : Int |]
SEM Expr
| Add lhs.count = @e2.count + 1

The attribute count is said to be threaded through the AST, the AG solution to a global
variable or the use of state monad. This is a result of the attribute being inherited as well
as synthesized and the copy rules. Its effect is an automatic copying of the attribute in a
preorder traversal of the AST.

Copy rules are attribute rules inserted by theAG system if a rule for an attribute 〈attr〉
in a production of 〈node〉 is missing. AG tries to insert a rule that copies the value of
another attribute with the same name, searching in the following order:

1. Local attributes.
2. The synthesized attribute of the children to the left of the child for which an inher-

ited 〈attr〉 definition is missing, with priority given to the nearest child fulfilling the
condition. A synthesized 〈attr〉 of a parent is considered to be at the right of any
child’s 〈attr′〉.

3. Inherited attributes (of the parent).

In our example the effect is that for the Let variant of Expr

– (inherited) @lhs.count is copied to (inherited) @val.count,
– (synthesized) @val.count is copied to (inherited) @body.count,
– (synthesized) @body.count is copied to (synthesized) @lhs.count.

Similar copy rules are inserted for the other variants. Only for variant Add of Expr a
different rule for @lhs.count is explicitly specified, since here we have a non-trivial
piece of semantics: i.e. we actually want to count something.

Automatic copy rule insertion can be both a blessing and curse. A blessing because it
takes away a lot of tedious work and minimises clutter in the AG source text. On the

16 A. Dijkstra and S.D. Swierstra

other hand it can be a curse, because a programmer may have forgotten an otherwise
required rule. If a copy rule can be inserted the AG compiler will silently do so, and the
programmer will not be warned.

As with our previous example we can let a parser map input text to the invocations of
semantic functions. For completeness this source text has been included in Fig. 4. The
result of parsing combined with the invocation of semantic functions will be a function
taking inherited attributes to a tuple holding all synthesized attributes. Even though the
order of the attributes in the result tuple is specified, its extraction via pattern matching
should be avoided. The AG system can be instructed to create a wrapper function which
knows how to extract the attributes out of the result tuple:

WRAPPER AGItf

The attribute values are stored in a data type with labeled fields for each attribute. The
attributes can be accessed with labels of the form 〈attr〉 Syn 〈node〉. The name of the
wrapper is of the form wrap 〈node〉; the wrapper function is passed the result of the
semantic function and a data type holding inherited attributes:

run :: Int → IO ()
run count

= do hPutStr stdout "Enter expression: "
hFlush stdout
l← getLine
r ← parseIOMessage show pAGItf l
let r′ = wrap AGItf r (Inh AGItf {count Inh AGItf = count })
putStrLn ("Expr=’" ++ disp (pp Syn AGItf r′) 40 ""++

"’, val=" ++ show (val Syn AGItf r′) ++
", add count thus far="++ show (count Syn AGItf r′)

)
run (count Syn AGItf r′)

main :: IO ()
main = run 0

We face a similar problem with the passing of inherited attributes to the semantic func-
tion. Hence inherited attributes are passed to the wrapper function via a data type with
name Inh 〈node〉 and a constructor with the same name, with fields having labels of the
form 〈attr〉 Inh 〈node〉. The count attribute is an example of an attribute which must be
passed as an inherited attribute as well as extracted as a synthesized attribute.

This concludes our introduction to the AG system. Some topics have either not been
mentioned at all or only shortly touched upon. We provide a list of those topics together
with a reference to the first use of the features which are actually used later in these
notes. Each of these items is marked withAG to indicate that it is about the AG system.

– Type synonym, only for lists (see section 14).
– Left hand side patterns for simultaneous definition of rules (see section 42).
– Set notation for variant names in rules (see section 31).

Typing Haskell with an Attribute Grammar 17

– Local attributes (see section 31).
– Additional copy rule via USE (see section 3.2).
– Additional copy rule via SELF (see section 3.2).
– Rule redefinition via� (see section 3.3).
– Cycle detection and other (experimental) features, commandline invocation, etc.

We will come back to the AG system itself in our conclusion.

instance Symbol Char

pAGItf :: IsParser p Char ⇒ p T AGItf
pAGItf = pRoot

where pRoot = sem AGItf AGItf 〈$〉 pExpr
pExpr = pChainr (sem Expr Add 〈$ pSym ’+’) pExprBase
pExprBase = (sem Expr IConst.foldl (λl r → l ∗ 10 + r) 0)

〈$〉 pList1 ((λc→ ord c − ord ’0’) 〈$〉 ’0’ 〈..〉 ’9’)
〈|〉 sem Expr Let
〈$ pSym ’[’ 〈∗〉 pNm 〈∗ pSym ’=’ 〈∗〉 pExpr
〈∗ pSym ’:’ 〈∗〉 pExpr
〈∗ pSym ’]’

〈|〉 sem Expr Var 〈$〉 pNm
pNm = (:"") 〈$〉 ’a’ 〈..〉 ’z’

In this section we build the first version of our series of compilers: the typed λ-calculus
packaged in Haskell syntax in which all values need to explicitly be given a type. The
compiler checks if the specified types are in agreement with actual value definitions.
For example

let i :: Int
i = 5

in i

is accepted, whereas

let i :: Char
i = 5

in i

produces a pretty printed version of the erroneous program, annotated with errors:

18 A. Dijkstra and S.D. Swierstra

2 EH 1: Typed λ- alculusC

Fig. 4. Parser for calculator example

let i :: Char

i = 5

{- ***ERROR(S):

In ‘5’:

Type clash:

failed to fit: Int <= Char

problem with : Int <= Char -}

{- [i:Char] -}

in i

Type signatures have to be specified for identifiers bound in a let expression. For λ-
expressions the type of the parameter can be extracted from these type signatures unless
a λ-expression occurs at the position of an applied function. In that case a type signature
for the λ-expression is required in the expression itself. This program will not typecheck
because this EH version does not allow polymorphic types in general and on higher
ranked (that is, parameter) positions in particular.

let v :: (Int, Char)
v = ((λf → (f 3, f ’x’))

:: (Char → Char)→ (Int, Char)
) (λx→ x)

in v

The implementation of a type system will be the main focus of this and following sec-
tions. As a consequence the full environment/framework needed to build a compiler
will not be discussed. This means in particular that error reporting, generation of a
pretty printed annotated output, parsing and the compiler driver are not described.

We start with the definition of the AST and how it relates to concrete syntax, followed
by the introduction of several attributes required for the implementation of the type
system.

The concrete syntax of a (programming) language describes the structure of acceptable
sentences for that language, or more down to earth, it describes what a compiler for that
language accepts with respect to the textual structure. On the other hand, abstract syntax
describes the structure used by the compiler itself for analysis and code generation.
Translation from the more user friendly concrete syntax to the machine friendly abstract
syntax is done by a parser; from the abstract to the concrete representation is done by a
pretty printer.

Let us focus our attention first on the abstract syntax for EH1, in particular the part
defining the structure for expressions (the remaining syntax can be found in Fig. 5).

Typing Haskell with an Attribute Grammar 19

2.1 Concrete and Abstract Syntax

DATA Expr
| IConst int : {Int }
| CConst char : {Char }
| Con nm : {HsName}
| Var nm : {HsName}
| App func : Expr

arg : Expr
| Let decls : Decls

body : Expr
| Lam arg : PatExpr

body : Expr
| AppTop expr : Expr
| Parens expr : Expr
| TypeAs tyExpr : TyExpr

expr : Expr

Integer constants are represented by IConst, lowercase (uppercase) identifier occur-
rences by Var (Con), an App represents the application of a function to its argument,
Lam and Let represent lambda expressions and let expressions.

AG: Type synonyms (for lists). The AG notation allows type synomyms for one spe-
cial case, AG’s equivalent of a list. It is an often occurring idiom to encode a list of
nodes, say DATA L with elements 〈node〉 as:

DATA L
| Cons hd : 〈node〉

tl : L
| Nil

AG allows the following notation as a shorthand:

TYPE L = [〈node〉]

The EH fragment (which is incorrect for this version of because type signatures are
missing)

let ic @(i, c) = (5, ’x’)
id = λx→ x

in id i

is represented by the following piece of abstract syntax tree:

AGItf_AGItf

Expr_Let

Decls_Cons

20 A. Dijkstra and S.D. Swierstra

PatExpr_AppTop

PatExpr_App

PatExpr_App

PatExpr_Con ",2"

PatExpr_Var "i"

PatExpr_Var "c"

Expr_AppTop

Expr_App

Expr_App

Expr_Con ",2"

Expr_IConst 5

Expr_CConst ’x’

Decls_Cons

Decl_Val

PatExpr_Var "id"

Expr_Lam

PatExpr_Var "x"

Expr_Var "x"

Decls_Nil

Expr_AppTop

Expr_App

Expr_Var "id"

Expr_Var "i"

The example also demonstrates the use of patterns, which is almost the same as in
Haskell: EH does not allow a type signature for the elements of a tuple.

Looking at this example and the rest of the abstract syntax in Fig. 5 we can make several
observations of what one is allowed to write in EH and what can be expected from the
implementation.

– There is a striking similarity between the structure of expressions Expr and patterns
PatExpr (and as we will see later type expressions TyExpr): they all contain App
and Con variants. This similarity will sometimes be exploited to factor out common
code, and, if factoring out cannot be done, leads to similarities between pieces of
code. This is the case with pretty printing(not included in these notes), which is
quite similar for the different kinds of constructs.

– Type signatures (Decl TySig) and value definitions (Decl Val) may be freely mixed.
However, type signatures and value definitions for the same identifier are still re-
lated.

– Because of the textual decoupling of value definitions and type signatures, a type
signature may specify the type for an identifier occurring inside a pattern:

PatExpr_VarAs "ic"

Typing Haskell with an Attribute Grammar 21

Decl_Val

DATA AGItf
| AGItf expr : Expr

DATA Decl
| TySig nm : {HsName}

tyExpr : TyExpr
| Val patExpr : PatExpr

expr : Expr

TYPE Decls = [Decl]

SET AllDecl = Decl Decls

DATA PatExpr
| IConst int : {Int }
| CConst char : {Char }
| Con nm : {HsName}
| Var nm : {HsName}
| VarAs nm : {HsName}

patExpr : PatExpr
| App func : PatExpr

arg : PatExpr
| AppTop patExpr : PatExpr
| Parens patExpr : PatExpr

SET AllPatExpr = PatExpr

DATA TyExpr
| Con nm : {HsName}
| App func : TyExpr

arg : TyExpr
| AppTop tyExpr : TyExpr
| Parens tyExpr : TyExpr

SET AllTyExpr = TyExpr

SET AllExpr = Expr

SET AllNT = AllTyExpr AllDecl AllPatExpr AllExpr

let a :: Int
(a, b) = (3, 4)

in ...

Currently we do not allow this, but the following however is:

let ab :: (Int, Int)
ab @(a, b) = (3, 4)

in ...

because the specified type for ab corresponds to the top of a pattern of a value
definition.

22 A. Dijkstra and S.D. Swierstra

Fig. 5. Abstract syntax for EH (without Expr)

– In EH composite values are created by tupling, denoted by (. . , . .). The same no-
tation is also used for patterns (for unpacking a composite value) and types (de-
scribing the structure of the composite). In all these cases the corresponding AST
consists of a Con applied to the elements of the tuple. For example, the value (2, 3)
corresponds to

Expr App (Expr App (Expr Con ",2") (Expr IConst 2)) (Expr IConst 3)

– For now there is only one value constructor: for tuples. The EH constructor for
tuples also is the one which needs special treatment because it actually stands for a
infinite family of constructors. This can be seen in the encoding of the name of the
constructor which is composed of a "," together with the arity of the constructor.
For example, the expression (3, 4) is encoded as an application App of Con ",2"
to the two Int arguments: (,2 3 4). In our examples we will follow the Haskell
convention, in which we write (,) instead of ‘,2’. By using this encoding we also
get the unit type () as it is encoded by the name ",0".

– The naming convention for tuples and other naming conventions are available
through the following definitions for Haskell names HsName.

data HsName = HNm String
deriving (Eq, Ord)

instance Show HsName where
show (HNm s) = s

hsnArrow, hsnUnknown, hsnInt, hsnChar, hsnWild :: HsName
hsnArrow = HNm "->"
hsnUnknown = HNm "??"
hsnInt = HNm "Int"
hsnChar = HNm "Char"
hsnWild = HNm "_"

hsnProd :: Int → HsName
hsnProd i = HNm (’,’ : show i)

hsnIsArrow, hsnIsProd :: HsName→ Bool
hsnIsArrow hsn = hsn ≡ hsnArrow
hsnIsProd (HNm (’,’ :)) = True
hsnIsProd = False

hsnProdArity :: HsName→ Int
hsnProdArity (HNm (: ar)) = read ar

– Each application is wrapped on top with an AppTop. This has no meaning in itself
but it simplifies the pretty printing of expressions3. We need AppTop for patterns,
but for the rest it can be ignored.

3 As it also complicates parsing it may disappear in future versions of EH.

– The location of parentheses around an expression is remembered by a Parens alter-
native. We need this for the reconstruction of the parenthesis in the input.

Typing Haskell with an Attribute Grammar 23

– AGItf is the top of a complete abstract syntax tree. As noted in the AG primer this
is the place where interfacing with the ‘outside’ Haskell world takes place. It is
a convention in these notes to give all nonterminals in the abstract syntax a name
with AGItf in it, if it plays a similar role.

2.2 Types

We will now turn our attention to the way the type system is incorporated into EH1.
We focus on the pragmatics of the implementation and less on the corresponding type
theory.

What is a type Compiler builders consider a type to be a description of the interpre-
tation of a value whereas a value is to be understood as a bitpattern. This means in
particular that machine operations such as integer addition, are only applied to patterns
that are to be interpreted as integers. More generally, we want to prevent unintended
interpretations of bitpatterns, which might likely lead to the crash of a program.

The flow of values, that is, the copying betweenmemory locations, through the execu-
tion of a program may only be such that a copy is allowed only if the corresponding
types relate to each other in some proper fashion. A compiler uses a type system to
analyse this flow and to make sure that built-in functions are only applied to patterns
that they are intended to work on. The idea is that if a compiler cannot find an erroneous
flow of values, with the notion of erroneous defined by the type system, the program is
guaranteed not to crash because of unintended use of bitpatterns.

In this section we start by introducing a type language in a more formal setting as well
as a more practical setting. The formal setting uses typing rules to specify the static
semantics of EH whereas in the practical setting the AG system is used, providing an
implementation. In the following section we discuss the typing rules, the mechanism
for enforcing the equality of types (called fitting) and the checking itself. Types will be
introduced informally, instead of taking a more formal approach [40,41,34,2].

Types are described by a type language. The type language for EH1 allows some basic
types and two forms of composite types, functions and tuples, and is described by the
following grammar:

σ = Int | Char
| (σ, ...,σ)
| σ→ σ

The following definition however is closer to the one used in our implementation:

σ = Int | Char | → | , | , , | ...
| σ σ

The latter definition also introduces the possibility of describing types like Int Int. We
nevertheless use this one since it is used in the implementation of later versions of EH

.

24 A. Dijkstra and S.D. Swierstra

where it will prove useful in expressing the application of type constructors to types.
Here we just have to make sure no types like Int Int will be created; in a (omitted) later
version of EH we perform kind inferencing/checking to prevent the creation of such
types from showing up.

The corresponding encoding using AG notation differs in the presence of an Any type,
also denoted by �. In section 2.3 we will say more about this. It is used to smoothen the
type checking by (e.g.) limiting the propagation of erroneous types:

DATA TyAGItf
| AGItf ty : Ty

DATA Ty
| Con nm : {HsName}
| App func : Ty

arg : Ty
| Any

The formal system and implementation of this system use different symbols to refer
to the same concept. For example, Any in the implementation is the same as � in the
typing rules. Not always is such a similarity pointed out explicitly but instead a notation
name1∥name2 is used to simultaneously refer to both symbols name1 and name2, for
example Any∥�. The notation also implies that the identifiers and symbols separated
by ’∥’ are referring to the same concept.

The definition of Ty will be used in both the Haskell world and the AG world. InHaskell
we use the corresponding data type generated by the AG compiler, for example in the
derived type TyL:

type TyL = [Ty]

The data type is used to construct type representations. In the AG world we define
computations over the type structure in terms of attributes. The corresponding semantic
functions generated by the AG system can then be applied to Haskell values.

The type system of a programming language is described by typing rules. A typing rule

– Relates language constructs to types.
– Constrains the types of these language constructs.

Type rules For example, the following is the typing rule (taken from Fig. 6) for function
application

Γ
expr� e2 : σa

Γ
expr� e1 : σa → σ
Γ

expr� e1 e2 : σ
(e-app1)

.

Typing Haskell with an Attribute Grammar 25

2.3 Checking Types

It states that an application of e1 to e2 has type σ provided that the argument has type
σa and the function has a type σa → σ.

Γ
expr� e : σ

Γ
expr� e2 : σa

Γ
expr� e1 : σa → σ
Γ

expr� e1 e2 : σ
(e-app1)

i → σi, Γ
expr� e : σe

Γ
expr� λi→ e : σi → σe

(e-lam1)

Γ
expr� e2 : σ2

Γ
expr� e1 : σ1

Γ
expr� (e1, e2) : (σ1,σ2)

(e-prod1)

i → σi, Γ
expr� ei : σi

i → σi, Γ
expr� e : σe

Γ
expr� let i :: σi; i = eiin e : σe

(e-let1)

(i → σ) ∈ Γ

Γ
expr

� i : σ
(e-ident1)

Γ
expr

� minint . .maxint : Int
(e-int1)

All rules we will use are of the form

prerequisite1

prerequisite2

...

consequence
(rule-name)

with the meaning that if all prerequisitei can be proven we may conclude the
consequence.

A prerequisite can take the form of any logical predicate or has a more structured form,
usually called a judgement:

context
judgetype� construct : property� more results

The part “� more results” needs not always be present if there are no more results for
a judgement. The notation reads as

26 A. Dijkstra and S.D. Swierstra

Fig. 6. Type rules for expressions

In the interpretation judgetype the construct has property property assuming
context and with optional additional more results.

If the context or more results itself consists of multiple parts, these parts are separated
by a semicolon ’;’. An underscore ’ ’ has a similar role as in Haskell to indicate a
property is not relevant for a type rule (see rule e-app1B, Fig. 7)

Although a rule formally is to be interpreted purely equational, it may help to realise
that from an implementors point of view this (more or less) corresponds to an imple-
mentation template, either in the form of a function judgetype:

judgetype = λconstruct →
λcontext → ...(property, more results)

or a piece of AG:

ATTR judgetype [context : ... ||
property : ...more results : ...]

SEM judgetype
| construct

lhs.(property, more results) = ... @lhs.context ...

Typing rules and implementation templates differ in that the latter prescribes the order in
which the computation of a property takes place, whereas the former simply postulates
relationships between parts of a rule. In general typing rules presented throughout these
notes will be rather explicit in the flow of information and thus be close to the actual
implementation.

Environment The rules in Fig. 6 refer to Γ, which is often called assumptions, envi-
ronment or context because it provides information about what may be assumed about
identifiers. Identifiers ξ are distinguished on the case of the first character, capitalized
I’s starting with an uppercase, uncapitalized i’s otherwise

ξ = i
| I

For type constants we will use capitalized identifiers I, whereas for identifiers bound to
an expression in a let-expression we will use lower case identifiers (i, j, ...).

An environment Γ is a vector of bindings, a partial finite map from identifiers to types:

Γ = ξ → σ

Concatenation of such collections as well as scrutinizing a collection is denoted with
a comma ’,’. For example, ‘i → σ, Γ’ represents a concatenation as well as a pattern

.

Typing Haskell with an Attribute Grammar 27

match. For rules this does not make a difference, for the implementation there is a
direction involved as we either construct from smaller parts or deconstruct (pattern
match) into smaller parts.

If shadowing is involved, that is duplicate entries are added, left /first (w.r.t. to the
comma ’,’) entries shadow right/later entries. In particular, when we locate some vari-
able in a Γ the first occurrence will be taken.

If convenient we will also use a list notation:

Γ = [ξ → σ]

This will be done if specific properties of a list are used or if we borrow from Haskell’s
repertoire of list functions. For simplicity we also use (assocation) lists in our imple-
mentation.

A list structure suffices to encode the presence of an identifier in a Γ, but it cannot
be used to detect multiple occurrences caused by duplicate introductions. Thus in our
implementation we use a stack of lists instead:

type AssocL k v = [(k, v)]

newtype Gam k v = Gam [AssocL k v] deriving Show

emptyGam :: Gam k v
gamUnit :: k → v → Gam k v
gamLookup :: Eq k ⇒ k → Gam k v→ Maybe v
gamToAssocL :: Gam k v → AssocL k v
gamPushNew :: Gam k v → Gam k v
gamPushGam :: Gam k v → Gam k v→ Gam k v
gamAddGam :: Gam k v → Gam k v→ Gam k v
gamAdd :: k → v → Gam k v→ Gam k v

emptyGam = Gam [[]]
gamUnit k v = Gam [[(k, v)]]
gamLookup k (Gam ll) = foldr (λl mv→ maybe mv Just (lookup k l))

Nothing ll
gamToAssocL (Gam ll) = concat ll
gamPushNew (Gam ll) = Gam ([] : ll)
gamPushGam g1 (Gam ll2) = Gam (gamToAssocL g1 : ll2)
gamAddGam g1 (Gam (l2 : ll2)) = Gam ((gamToAssocL g1 ++ l2) : ll2)
gamAdd k v = gamAddGam (k → v)

Entering and leaving a scope is implemented by means of pushing and popping a Γ.
Extending an environment Γ will take place on the top of the stack only. A gamUnit
used as an infix operator will print as →.

28 A. Dijkstra and S.D. Swierstra

A specialization ValGam of Gam is used to store and lookup the type of value identifiers.

data ValGamInfo = ValGamInfo{vgiTy :: Ty} deriving Show

type ValGam = Gam HsName ValGamInfo

The type is wrapped in a ValGamInfo. Later versions of EH can add additional fields to
this data type.

valGamLookup :: HsName→ ValGam→ Maybe ValGamInfo
valGamLookup = gamLookup

valGamLookupTy :: HsName→ ValGam→ (Ty, ErrL)
valGamLookupTy n g

= case valGamLookup n g of
Nothing→ (Ty Any, [Err NamesNotIntrod [n]])
Just vgi → (vgiTy vgi, [])

Later the variant valGamLookup will do additional work, but for now it does not dif-
fer from gamLookup. The additional variant valGamLookupTy is specialized further to
produce an error message in case the identifier is missing from the environment.

Checking Expr The rules in Fig. 6 do not provide much information about how the
typeσ in the consequence of a rule is to be computed; it is just stated that it should relate
in some way to other types. However, type information can be made available to parts
of the abstract syntax tree, either because the programmer has supplied it somewhere or
because the compiler can reconstruct it. For types given by a programmer the compiler
has to check if such a type correctly describes the value of an expression for which the
type is given. This is called type checking. If no type information has been given for a
value, the compiler needs to reconstruct or infer this type based on the structure of the
abstract syntax tree and the semantics of the language as defined by the typing rules.
This is called type inferencing. In EH1 we exclusively deal with type checking.

We now can tailor the type rules in Fig. 6 towards an implementation which performs
type checking, in Fig. 7. We also start with the discussion of the corresponding AG
implementation. The rules now take an additional context, the expected (or known)
type σk (attribute knTy, simultaneously referred to by σk∥knTy) as specified by the
programmer, defined in terms of AG as follows:

ATTR AllExpr [knTy : Ty ||]

The basic idea underlying this implementation for type checking, as well as in later
versions of EH also for type inferencing, is that

– A known (or expected) type σk∥knTy is passed top-down through the syntax tree of
an expression, representing the maximal type (in terms of �, see Fig. 8 and discus-

.

Typing Haskell with an Attribute Grammar 29

Γ;σk expr� e : σ

Γ;σa expr� e2 :

Γ;�→ σk expr� e1 : σa → σ
Γ;σk expr� e1 e2 : σ

(e-app1B)
i → σi, Γ;σr expr� e : σe

Γ;σi → σr expr� λi→ e : σi → σe
(e-lam1B)

Γ;σk
2

expr� e2 : σ2

Γ;σk
1

expr� e1 : σ1

Γ; (σk
1,σk

2)
expr� (e1, e2) : (σ1,σ2)

(e-prod1B)

i → σi, Γ;σi expr� ei :

i → σi, Γ;σk expr� e : σe

Γ;σk expr� let i :: σi; i = eiin e : σe
(e-let1B)

(i → σi) ∈ Γ
fit� σi � σk : σ

Γ;σk expr� i : σ
(e-ident1B)

fit� Int � σk : σ

Γ;σk expr� minint . .maxint : σ
(e-int1B)

sion below) the type of an expression can be. At all places where this expression is
used it also is assumed that the type of this expression equals σk.

– A result type σ∥ty is computed bottom-up for each expression, representing the
minimal type (in terms of �) the expression can have.

– At each node in the abstract syntax tree it is checked whether σ � σk holds. The
result of lhs � rhs is rhs which is subsequently used by the type checker, for
example to simply return or use in constructing another, usually composite, type.

– In general, for lhs � rhs the rhs is an expected type whereas lhs is the bottom-up
computed result type.

An additional judgement type named fit (Fig. 8) is needed to check an actual type
against an expected (known) type. The judgement specifies the matching σ1 � σ2 of
two types σ1 and σ2. The meaning of � is that the left hand side (lhs) type σ1 of � can
be used where the right hand side (rhs) type σ2 is expected. Expressed differently, �
checks whether a value of type σ1 can flow (that is, be stored) into a memory location
of type σ2. This is an asymmetric relation because “a value flowing into a location”
does not imply that it can flow the other way, so � conceptually has a direction, even
though in the rules in Fig. 8 � is a test on equality of the two type arguments.

30 A. Dijkstra and S.D. Swierstra

Fig. 7. Type checking for expression (checking variant)

fit� σl � σr : σ

fit� σa
2 � σ

a
1 : σa

fit� σr
1 � σ

r
2 : σr

fit� σa
1 → σr

1 � σ
a
2 → σr

2 : σa → σr
(f-arrow1)

fit� σl
1 � σ

l
2 : σl

fit� σr
1 � σ

r
2 : σr

fit� (σl
1,σr

1) � (σl
2,σr

2) : (σl,σr)
(f-prod1)

I1 ≡ I2

fit� I1 � I2 : I2

(f-con1)

fit� � � σ : σ
(f-anyl1)

fit� σ � � : σ
(f-anyr1)

The rules for� also specify a result type. Strictly this result is not required for the fit
judgement to hold but in the implementation it is convenient to have the implementation
fitsIn of � return the smallest type σ for which of σ1 � σ and σ2 � σ hold. This is
useful in particular in relation to the use of � in in rule f-anyl1 and rule f-anyr1; we will
come back to this later.

For example, � is used in rule e-int1B whichchecks that its actual Int typematches the
known type σk. The implementation of the type rule e-int1B performs this check and
returns the type σ in attribute ty:

ATTR AllExpr [|| ty : Ty]

SEM Expr
| CConst loc.fTy = tyChar
| IConst loc.fTy = tyInt
| IConst CConst

loc.fo = @fTy � @lhs.knTy
.ty = foTy @fo

AG: Set notation for variants. The rule for (e.g.) attribute fo is specified for IConst
and CConst together. Instead of specifying only one variant a whitespace separated
list of variant names may be specified after the vertical bar ’|’. It is also allowed to

Typing Haskell with an Attribute Grammar 31

Fig. 8. Rules for fit

specify this list relative to all declared variants by specifying for which variants the
rule should not be declared. For example: ∗ − IConst CConst if the rule was to be
defined for all variants except IConst and CConst.

AG: Local attributes. The attribute fTy is declared locally. In this context ‘local’
means that the scope is limited to the variant of a node. Attribute fTy defined for
variant IConst is available only for other attribute rules for variant IConst of Expr.
Note that no explicit rule for synthesized attribute ty is required; a copy rule is
inserted to use the value of the locally declared attribute ty. This is a common AG
idiom when a value is required for later use as well or needs to be redefined in later
versions of EH.

Some additional constants representing built-in types are also required:

tyInt = Ty Con hsnInt
tyChar = Ty Con hsnChar

The local attribute fTy (by convention) holds the type as computed on the basis of the ab-
stract syntax tree. This type fTy is subsequently compared to the expected type lhs.knTy
via the implementation fitsIn of the rules for fit∥ �. In infix notation fitsIn prints as �.
The function fitsIn returns a FIOut (fitsIn output) data structure in attribute fo. FIOut
consists of a record containing amongst other things field foTy:

data FIOut = FIOut{foTy :: Ty , foErrL :: ErrL}
emptyFO = FIOut{foTy = Ty Any, foErrL = [] }
foHasErrs :: FIOut → Bool
foHasErrs = ¬.null.foErrL

Using a separate attribute fTy instead of using its value directly has been done in order
to prepare for a redefinition of fTy in later versions4.

Ty Any∥Any∥� plays a special role. This type appears at two places in the implemen-
tation of the type system as a solution to the following problems:

– Invariant to our implementation is the top-down passing of an expected type. How-
ever, this type is not always fully known in a top-down order. For example, in
rule e-app1B (Fig. 7) the argument of the expected function type � → σk is not
known because this information is only available from the environment Γ which is
used further down in the AST via rule e-ident1B. In this use of � it represents a
“dont’t know” of the type system implementation. As such � has the role of a type
variable (as introduced for type inferencing in section 3).

4 This will happen with other attributes as well.

32 A. Dijkstra and S.D. Swierstra

– An error occurs at a place where the implementation of the type system needs a
type to continue (type checking) with. In that case � is used to prevent further
errors from occurring. In this use of � it represents a “dont’t care” of the type
system implementation. As such � will be replaced by more a more specific type
as soon as it matches (via �) such a type.

In both cases � is a type exclusively used by the implementation to smoothen type
checking. The rules for � for � in Fig. 8 state that � is equal to any type. The effect is
that the result of � is a more specific type. This suits our “dont’t know” and “dont’t care”
use. Later, when discussing the AG implementation for these rules this issue reappears.
In later EH versions we will split the use of � into the proper use of a type lattice, and
will it thus disappear.

The role of � may appear to be similar to� and⊥ known from type theory. However,
� is used only as a mechanism for the type system implementation. It is not offered as
a feature to the user (i.e. the EH programmer) of the type system.

Ty Any∥Any∥� is also used at the top level where the actual expected type of the ex-
pression neither is specified nor matters because it is not used:

SEM AGItf
| AGItf expr.knTy = Ty Any

The rule f-arrow1 in Fig. 8 for comparing function types compares the types for argu-
ments in the opposite direction. Only in later versions of EH when � really behaves
asymmetrically we will discuss this aspect of the rules which is named contravariance.
In the rules in Fig. 8 the direction makes no difference; the correct use of the direction
for now only anticipates issues yet to come.

The Haskell counterpart of
f it� σ1 � σ2 : σ is implemented by fitsIn:

fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2

= f ty1 ty2
where

res t = emptyFO{ foTy = t }
f Ty Any t2 = res t2
f t1 Ty Any = res t1
f t1 @(Ty Con s1)

t2 @(Ty Con s2)
| s1 ≡ s2 = res t2

f t1 @(Ty App (Ty App (Ty Con c1) ta1) tr1)
t2 @(Ty App (Ty App (Ty Con c2) ta2) tr2)
| hsnIsArrow c1 ∧ c1 ≡ c2
= comp ta2 tr1 ta1 tr2 (λa r [a] ‘mkTyArrow‘ r)→

Typing Haskell with an Attribute Grammar 33

The function fitsIn checks whether the Ty App structure and all type constants Ty Con
are equal. If not, a non-empty list of errors is returned as well as type Ty Any∥Any∥�.
Matching a composite type is split in two cases for Ty App, one for function types (the
first case), and one for the remaining type applications (the second case). For the current
EH version the second case only concerns tuple types. Both matches for composite
types use comp wich performs multiple �’s and combines the results. The difference
lies in the treatment of contravariant behavior as discussed earlier.

The type rules leave in the open how tohandleasituationwhena requiredconstraint is
broken. For a compiler this is not good enough, being the reason fitsIn gives a “will-do”
type Ty Any back together with an error for later processing. Errors themselves are also
described via AG:

DATA Err
| UnifyClash ty1 : {Ty} ty2 : {Ty}

ty1detail : {Ty} ty2detail : {Ty}
DATA Err
| NamesNotIntrod nmL : { [HsName]}

f t1 @(Ty App tf 1 ta1)
t2 @(Ty App tf 2 ta2)

= comp tf 1 ta1 tf 2 ta2 Ty App
f t1 t2 = err [Err UnifyClash ty1 ty2 t1 t2]
err e = emptyFO{ foErrL = e}
comp tf 1 ta1 tf 2 ta2 mkComp

= foldr1 (λfo1 fo2 → if foHasErrs fo1 then fo1 else fo2)
[ffo, afo, res rt]

where ffo = f tf 1 tf 2
afo = f ta1 ta2

rt = mkComp (foTy ffo) (foTy afo)

The Err datatype is available as a datatype in the same way Ty is. The error datatype is
also used for signalling undeclared identifiers:

SEM Expr
| Var loc.(gTy, nmErrs)

= valGamLookupTy @nm @lhs.valGam
.fTy = @gTy
.fo = @fTy � @lhs.knTy
.ty = foTy @fo

AG: Left hand side patterns. The simplest way to define a value for an attribute is to
define one value for one attribute at a time. However, if this value is a tuple, its fields
are to be extracted and assigned to individual attributes (as in tyArrowArgRes). AG
allows a pattern notation of the form(s) to make the notation for this situation more
concise:

34 A. Dijkstra and S.D. Swierstra

| 〈variant〉 〈node〉.(〈attr1〉 , 〈attr2〉 , ...) =
| 〈variant〉 (〈node1〉.〈attr1〉, 〈node1〉.〈attr2〉, ...) =

Again, the error condition is signalled by a non empty list of errors if a lookup in Γ fails.
These errors are gathered so they can be incorporated into an annotated pretty printed
version of the program.

Typing rule e-ident1B uses the environment Γ to retrieve the type of an identifier. This
environment valGam for types of identifiers simply is declared as an inherited attribute,
initialized at the top of the abstrcat syntax tree. It is only extended with new bindings
for identifiers at a declaration of an identifier.

ATTR AllDecl AllExpr [valGam : ValGam ||]
SEM AGItf
| AGItf expr.valGam = emptyGam

One may wonder why the judgement
f it� σ1 � σ2 : σ and its implementation fitsIn

returns a type at all; the idea of checking was to only pass explicit type information σk

(or knTy) from the top of the abstract syntax tree to the leaf nodes. Note that this idea
breaks when we try to check the expression id 3 in

let id :: Int → Int
id = λx→ x

in id 3

What is the knTy against which 3 will be checked? It is the argument type of the type of
id. However, in rule e-app1B and its AG implementation, the type of id is not the (top-
to-bottom travelling) σk∥knTy, but it will be the argument part of the (bottom-to-top
travelling) resulting function type of e1∥func.ty:

SEM Expr
| App loc .knFunTy = [Ty Any] ‘mkTyArrow‘ @lhs.knTy

func.knTy = @knFunTy
(arg.knTy, loc.fTy) = tyArrowArgRes @func.ty
loc .ty = @fTy

The idea here is to encode the partially known function type as � → σk (passed to
fun.knTy) and let fitsIn fill in the missing details, that is to find a type for �. This is
the place where it is convenient to have fitsIn return a type in which �∥Ty Any’s are
replaced by a more concrete type. From that result the known/expected type of the
argument can be extracted.

Note that we are already performing a little bit of type inferencing. This is however
only done locally to App as the � in � → σk is guaranteed to have disappeared in the
result type of fitsIn. If this is not the case, the EH program contains an error. This is a
mechanism we repeatedly use, so we summarize it here:

Typing Haskell with an Attribute Grammar 35

– Generally, the semantics of the language requires a type σ to be of a specific form.
Here σ equals the type of the function (not known at the App location in the AST)
which should have the form �→ σk.

– The specific form may contain types about which we know nothing, here encoded
by �, in later EH versions by type variables.

– fitsIn∥ � is used to enforce σ to have the right form. Here this is done by pushing
the form as σk down the AST for the function (attribute func.knTy). The check
σ � σk is then performed in the Var variant of Expr.

– Enforcing may or may not succeed. In the latter case error messages are generated
and the result of enforcing is �.

The type construction and inspection done in the App variant of Expr requires some
additional type construction functions, of which we only include mkTyArrow:

algTy :: MkConApp Ty
algTy = (Ty Con, Ty App, id, id)

mkTyArrow :: TyL→ Ty→ Ty
mkTyArrow = flip (foldr (mkArrow algTy))

The function is derived from a more general function mkArrow:

type MkConApp t = (HsName→ t, t → t → t, t → t, t → t)

mkArrow :: MkConApp t → t → t → t
mkArrow alg @(con, , ,) a r = mkApp alg [con hsnArrow, a, r]

mkApp :: MkConApp t → [t] → t
mkApp (, app, top,) ts

= case ts of
[t] → t
→ top (foldl1 app ts)

A MkConApp contains four functions, for constructing a value similar to Con, App,
AppTop and IConst respectively. These functions are used by mkApp to build an App
like structure and by mkArrow to build function like structures. The code for (e.g.)
parsers (omitted from these notes), uses these functions parameterized with the proper
four semantics functions as generated by the AG system. So this additional layer of
abstraction improves code reuse. Similarly, function mkTyProdApp constructs a tuple
type out of types for the elements.

The functions used for scrutinizing a type are given names in which (by convention)the
following is encoded:

– What is scrutinized.
– What is the result of scrutinizing.

36 A. Dijkstra and S.D. Swierstra

For example, tyArrowArgRes dissects a function type into its argument and result type.
If the scrutinized type is not a function, “will do” values are returned:

tyArrowArgRes :: Ty→ (Ty, Ty)

tyArrowArgRes t
= case t of

Ty App (Ty App (Ty Con nm) a) r
| hsnIsArrow nm→ (a, r)

→ (Ty Any, t)

Similarly tyProdArgs is defined to return the types of the elements of a tuple type. The
code for this and other similar functions have been omitted for brevity.

Constructor Con, tuples. Apart from constructing function types only tupling allows us
to build composite types. The rule e-prod1B for tupling has no immediate counterpart
in the implementation because a tuple (a, b) is encoded as the application (,) a b. The
alternative Con takes care of producing a type a→ b→ (a, b) for (,).

SEM Expr
| Con loc.ty = let resTy = tyArrowRes @lhs.knTy

in tyProdArgs resTy ‘mkTyArrow‘ resTy

This type can be constructed from knTy which by definition has the form � → � →
(a, b) (for this example). The result type of this function type is taken apart and used to
produce the desired type. Also by definition (via construction by the parser) we know
the arity is correct.

Note that, despite the fact that the cartesian product constructors are essentially poly-
morphic, we do not have to do any kind of unification here, since they either appear in
the right hand side of declaration where the type is given by an explcit type declaration,
or they occur at an argument position where the type has been implicitly specified by
the function type. Therefore we indeed can use the a and b from type � → � → (a, b)
to construct the type a→ b→ (a, b) for the constructor (,).

λ-expression Lam. For rule e-lam1B the check whether knTy has the formσ1→ σ2

is done by letting fitsIn match the knTy with � → �. The result (forced to be a func-
tion type) is split up by tyArrowArgRes into argument and result type. The function
gamPushNew opens a new scope on top of valGam so as to be able to check duplicate
names introduced by the pattern arg:

SEM Expr
| Lam loc .funTy = [Ty Any] ‘mkTyArrow‘ Ty Any

.foKnFun = @funTy � @lhs.knTy
(arg.knTy, body.knTy) = tyArrowArgRes (foTy @foKnFun)
arg.valGam = gamPushNew @lhs.valGam
loc .ty = @lhs.knTy

Typing Haskell with an Attribute Grammar 37

Type annotations (for λ-expression). In order to make λ-expressions typecheck cor-
rectly it is the responsibility of the EH programmer to supply the correct type signature.
The TypeAs variant of Expr takes care of this by simply passing the type signature as
the expected type:

SEM Expr
| TypeAs loc .fo = @tyExpr.ty � @lhs.knTy

expr.knTy = @tyExpr.ty

The obligation for the EH programmer to specify a type is dropped in later versions of
EH.

Checking PatExpr Before we can look into more detail at the way new identifiers
are introduced in let- and λ-expressions we take a look at patterns. The rule e-let1B is
too restrictive for the actual language construct supported by EH because the rule only
allows a single identifier to be introduced. The following program allows inspection of
parts of a composite value by naming its components through pattern matching:

let p :: (Int, Int)
p @(a, b) = (3, 4)

in a

The rule e-let1C from Fig. 9 together with the rules for patterns from Fig. 10 reflects
the desired behaviour. These rules differ from those in Fig. 7 in that a pattern instead
of a single identifier is allowed in a value definition and the parameter position of a
λ-expression.

Γ;σk expr� e : σ

Γp, Γ;σi expr� ei :

Γp, Γ;σk expr� e : σe

σi pat� p : Γp

p ≡ i ∨ p ≡ i @...

Γ;σk expr� let i :: σi; p = eiin e : σe
(e-let1C)

Γp, Γ;σr expr� e : σe

σp pat� p : Γp

Γ;σp → σr expr� λp→ e : σp → σe
(e-lam1C)

.

38 A. Dijkstra and S.D. Swierstra

Fig. 9. Type checking for let-expression with pattern

σk pat� p : Γp

σk pat� i : [i → σk]
(p-var1)

dom (Γp
1) ∩ dom (Γp

2) = ∅
σk

2

pat� p2 : Γp
2

σk
1

pat� p1 : Γp
1

(σk
1,σk

2)
pat� (p1, p2) : Γp

1, Γp
2

(p-prod1)

Again the idea is to distribute a knowntypeover thepattern bydissecting it into itscon-
stituents. However, patterns do not return a type but type bindings for the identifiers in-
side a pattern instead. The new bindings are subsequently used in let- and λ-expressions
bodies.

A tuple pattern with rule p-prod1 is encoded in the same way as tuple expressions; that
is, pattern (a, b) is encoded as an application (,)a b with an AppTop on top of it. We

dissect the known type of a tuple in rule p-prod1 into its element types at AppTop using
function tyProdArgs. For this version of EH we only have tuple patterns; we can indeed
assume that we are dealing with a tuple type.

ATTR AllPatExpr [knTy : Ty ||]
ATTR PatExpr [knTyL : TyL ||]
SEM PatExpr
| AppTop loc .knProdTy

= @lhs.knTy
.(knTyL, aErrs)

= case tyProdArgs @knProdTy of
tL | @patExpr.arity ≡ length tL
→ (reverse tL, [])
→ (repeat Ty Any

, [Err PatArity
@knProdTy @patExpr.arity])

| App loc .(knArgTy, knTyL)
= hdAndTl @lhs.knTyL

arg.knTy = @knArgTy

The list of these elements is passed through attribute knTyL to all App’s of the pattern.
At each App one element of this list is taken as the knTy of the element AST.

Typing Haskell with an Attribute Grammar 39

Fig. 10. Building environments from patterns

The complexity in the AppTop alternative of PatExpr arisesfrom repairactions in case
the arity of the pattern and its known type do not match. In that case the subpatterns are
given as many �’s as known type as necessary.

Finally, for the distribution of the known type throughout a pattern we need to properly
initialize knTyL:

SEM Decl
| Val patExpr.knTyL = []

SEM Expr
| Lam arg .knTyL = []

The arity of the patterns is needed as well:

ATTR PatExpr [|| arity : Int]

SEM PatExpr
| App lhs.arity = @func.arity + 1
| Con Var AppTop IConst CConst

lhs.arity = 0

As a result of this unpacking, at a Var alternative attribute knTy holds the type of the
variable name introduced. The type is added to attribute valGam that is threaded through
the pattern for gathering all introduced bindings:

ATTR AllPatExpr [| valGam : ValGam |]
SEM PatExpr

| Var VarAs loc.ty = @lhs.knTy
.varTy = @ty
.addToGam = if @lhs.inclVarBind ∧ @nm � hsnWild

then gamAdd @nm
(ValGamInfo @varTy)

else id
| Var lhs.valGam = @addToGam @lhs.valGam
| VarAs lhs.valGam = @addToGam @patExpr.valGam

The addition to valGam is encoded in the attribute addToGam, a function which only
adds a new entry if the variable name is not equal to an underscore ’ ’ and has not
been added previously via a type signature for the variable name, signalled by attribute
inclVarBind (defined later).

Checking declarations In a let-expression type signatures, patterns and expressions
do meet. Rule e-let1C from Fig. 9 shows that the idea is straightforward: take the type
signature, distribute it over a pattern to extract bindings for identifiers and pass both
type signature (as knTy) and bindings (as valGam) to the expression. This works fine
for single combinations of type signature and the corresponding value definition for a
pattern. However, it does not work for:

.

40 A. Dijkstra and S.D. Swierstra

– Mutually recursive value definitions.

let f :: ...
f = λx→ ...g ...
g :: ...
g = λx→ ...f ...

in ...

In the body of f the type g must be known and vice-versa. There is no ordering of
what can be defined and checked first. In Haskell f and g together would be in the
same binding group.

– Textually separated signatures and value definitions.

let f :: ...
...
f = λx→ ...

in ...

Syntactically the signature and value definition for an identifier need not be defined
adjacently or in any specific order.

In Haskell dependency analysis determines that f and g form a so-called binding group,
which contains declarations that have to be subjected to type analysis together. How-
ever, due to the obligatory presence of the type signatures in this version of EH it is
possible to first gather all signatures and only then type check the value definitions.
Therefore, for this version of EH it is not really an issue as we always require a sig-
nature to be defined. For later versions of EH it actually will become an issue, so for
simplicity all bindings in a let-expression are analysed together as a single (binding)
group.

Though only stating something about one combination of type signature and valuedef-
inition, rule e-let1C still describes the basic strategy. First extract all type signatures,
then distribute those signatures over patterns followed by expressions. The difference
lies in doing it simultaneously for all declarations in a let-expression. So, first all signa-
tures are collected:

ATTR AllDecl [| gathTySigGam : ValGam |]
SEM Decl
| TySig loc .gamSigTy = @tyExpr.ty

.gathTySigGam = gamAdd
@nm (ValGamInfo @gamSigTy)
@lhs.gathTySigGam

SEM Expr
| Let decls.gathTySigGam = emptyGam

Typing Haskell with an Attribute Grammar 41

Attribute gathTySigGam is used to gather type signatures. The gathered signatures are
then passed back into the declarations. Attribute tySigGam is used to distribute the
gathered type signatures over the declarations.

ATTR AllDecl [tySigGam : ValGam ||]
SEM Expr
| Let decls.tySigGam = @decls.gathTySigGam

At a value declaration we extract the the type signature from tySigGam and use it to
check whether a pattern has a type signature:

SEM Decl
| Val loc .(sigTy, hasTySig) = case @patExpr.mbTopNm of

Nothing
→ (Ty Any, False)

Just nm
→ case gamLookup nm @lhs.tySigGam of

Nothing→ (Ty Any, False)
Just vgi → (vgiTy vgi, True)

This type signature is then used as the known type of the pattern and the expression.

SEM Decl
| Val loc.knTy = @sigTy

The flag hasTySig is used to signal the presence of a type signature for a value and a
correct form of the pattern. We allow patterns of the form ‘ab @(a, b)’ to have a type
signature associated with ab. No type signatures are allowed for ‘(a, b)’ without the
‘ab @’ alias (because there is no way to refer to the anonymous tuple) nor is it allowed
to specify type signature for the fields of the tuple (because of simplicity, additional
plumbing would be required).

ATTR PatExpr [|| mbTopNm : {Maybe HsName}]
SEM PatExpr
| Var VarAs loc.mbTopNm = if @nm ≡ hsnWild then Nothing else Just @nm
| ∗ − Var VarAs

loc.mbTopNm = Nothing

The value of hasTySig is also used to decide on the binding of the top level identifier of
a pattern, via inclVarBind.

ATTR PatExpr [inclVarBind : Bool ||]
SEM PatExpr
| AppTop patExpr.inclVarBind = True

SEM Decl
| Val patExpr.inclVarBind = ¬ @hasTySig

SEM Expr
| Lam arg .inclVarBind = True

42 A. Dijkstra and S.D. Swierstra

If a type signature for an identifier is already defined there is no need to rebind the
identifier by adding one more binding to valGam.

New bindings are not immediatelyaddedto valGambut are first gathered inaseparately
threaded attribute patValGam, much in the same way as gathTySigGam is used.

ATTR AllDecl [| patValGam : ValGam |]
SEM Decl
| Val patExpr.valGam = @lhs.patValGam

lhs .patValGam = @patExpr.valGam
expr .valGam = @lhs.valGam

SEM Expr
| Let decls.patValGam = @decls.gathTySigGam

‘gamPushGam‘ @lhs.valGam
loc .(lValGam, gValGam) = gamPop @decls.patValGam
decls.valGam = @decls.patValGam
body .valGam = @decls.patValGam

Newly gathered bindings are stacked on top of the inherited valGam before passing
them on to both declarations and body.

Someadditional functionality forpushingandpopping thestackvalGam is alsoneeded:

gamPop :: Gam k v → (Gam k v, Gam k v)
assocLToGam :: AssocL k v→ Gam k v

gamPop (Gam (l : ll)) = (Gam [l], Gam ll)
assocLToGam l = Gam [l]

Extracting the top of the stack patValGam gives all the locally introduced bindings in
lValGam. An additional error message is produced if any duplicate bindings are present
in lValGam.

Checking TyExpr All that is left to do now is to use the type expressions to extract
type signatures. This is straightforward as type expressions (abstract syntax for what
the programmer specified) and types (as internally used by the compiler) have almost
the same structure:

ATTR TyExpr [|| ty : Ty]

SEM TyExpr
| Con lhs.ty = Ty Con @nm
| App lhs.ty = Ty App @func.ty @arg.ty

Actually, we need to do more because we also have to check whether a type is defined.
A variant of Gam is used to hold type constants:

.

Typing Haskell with an Attribute Grammar 43

data TyGamInfo = TyGamInfo{tgiTy :: Ty} deriving Show

type TyGam = Gam HsName TyGamInfo

tyGamLookup :: HsName→ TyGam→ Maybe TyGamInfo
tyGamLookup nm g

= case gamLookup nm g of
Nothing | hsnIsProd nm→ Just (TyGamInfo (Ty Con nm))
Just tgi → Just tgi

→ Nothing

This Γ is threaded through TyExpr:

ATTR AllTyExpr [| tyGam : TyGam |]

At the root of the AST tyGam is initialized with the fixed set of types available in this
version of the compiler:

SEM AGItf
| AGItf loc.tyGam = assocLToGam

[(hsnArrow, TyGamInfo (Ty Con hsnArrow))
, (hsnInt, TyGamInfo tyInt)
, (hsnChar, TyGamInfo tyChar)
]

Finally, at the Con alternative of TyExpr we need to check if a type is defined:

SEM TyExpr
| Con loc.(tgi, nmErrs) = case tyGamLookup @nm @lhs.tyGam of

Nothing→ (TyGamInfo Ty Any
, [Err NamesNotIntrod [@nm]])

Just tgi → (tgi, [])

The next version of EH drops the requirement that all value definitions need to be ac-
companied by an explicit type signature. For example, the example from the introduc-
tion:

let i = 5
in i

is accepted by this version of EH:

let i = 5

{- [i:Int] -}

in i

44 A. Dijkstra and S.D. Swierstra

3 EH 2: Monomorphic Type Inferencing

The idea is that the type system implementation has an internal representation for
“knowing it is a type, but not yet which one” which can be replaced by a more spe-
cific type if that becomes known. The internal representation for a yet unknown type is
called a type variable, similar to mutable variables for (runtime) values.

The implementation attempts to gather as much information as possible from a program
to reconstruct (or infer) types for type variables. However, the types it can reconstruct
are limited to those allowed by the used type language, that is, basic types, tuples and
functions. All types are assumed to be monomorphic, that is, polymorphism is not yet
allowed. The next version of EH deals with polymorphism.

So

let id = λx→ x
in let v = id 3

in id

will give

let id = \x -> x

{- [id:Int -> Int] -}

in let v = id 3

{- [v:Int] -}

in id

If the use of id to define v is omitted, less information (namely the argument of id is
an int) to infer a type for id is available. Because no more specific type information for
the argument (and result) of id could be retrieved the representation for “not knowing
which type”, that is, a type variable, is shown:

let id = \x -> x

{- [id:v_1_1 -> v_1_1] -}

in id

On the other hand, if contradictory information is found we will have

let id = \x -> x

{- [id:Int -> Int] -}

in let v = (id 3,id ’x’)

{- ***ERROR(S):

In ‘(id 3,id ’x’)’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

{- [v:(Int,Int)] -}

in v

Typing Haskell with an Attribute Grammar 45

However, the next version of EH dealing with Haskell style polymorphism (section 4)
accepts this program.

Partial type signatures are also allowed. A partial type signature specifies a type only
for a part, allowing a coöperation between the programmer who specifies what is (e.g.)
already known about a type signature and the type inferencer filling in the unspecified
details. For example:

let id :: ...→ ...
id = λx→ x

in let f :: (Int → Int)→ ...
f = λi→ λv→ i v
v = f id 3

in let v = f id 3
in v

The type inferencer pretty prints the inferred type instead of the explicity type signature:

let id :: Int -> Int

id = \x -> x

{- [id:Int -> Int] -}

in let f :: (Int -> Int) -> Int -> Int

f = \i -> \v -> i v

v = f id 3

{- [v:Int, f:(Int -> Int) -> Int -> Int] -}

in let v = f id 3

{- [v:Int] -}

in v

The discussion of the implementation of this feature is postponed until section 3.6 in
order to demonstrate the effects of an additional feature on the compiler implementation
in isolation.

In order to be able to represent yet unknown types the type language needs type vari-
ables to represent this:

σ = Int | Char
| (σ, ...,σ)
| σ→ σ
| v

The corresponding type structure Ty needs to be extended with an alternative for a
variable:

DATA Ty
| Var tv : {TyVarId }

46 A. Dijkstra and S.D. Swierstra

3.1 Type Variables

A type variable is identified by a unique identifier, a UID:

newtype UID = UID [Int] deriving (Eq, Ord)

type UIDL = [UID]

instance Show UID where
show (UID ls) = concat.intersperse "_".map show.reverse $ ls

type TyVarId = UID

type TyVarIdL = [TyVarId]

The idea is to thread a counter as global variable through the AST, incrementing it
whenever a new unique value is required. The implementation used throughout all EH
compiler versions is more complex because an UID actually is a hierarchy of counters,
each level counting in the context of an outer level. This is not discussed any further;
we will ignore this aspect and just assume a unique UID can be obtained. However, a
bit of its implementation is visible in the pretty printed representation as a underscore
separated list of integer values, occasionaly visible in sample output of the compiler.

3.2 Constraints

Although the typing rules at Fig. 9 still hold we need to look at the meaning of � (or
fitsIn) in the presence of type variables. The idea here is that what is unknown may be
replaced by that which is known. For example, when the check v � σ is encountered,
the easiest way to make v � σ true is to state that the (previously) unknown type v
equals σ. An alternative way to look at this is that v � σ is true under the constraint
that v equals σ.

Remembering and applying constraints Next we can observe that once a certain type
v is declared to be equal to a type σ this fact has to be remembered.

C = [v → σ]

A set of constraints C (appearing in its non pretty printed form as Cnstr in the source
text) is a set of bindings for type variables, represented as an association list:

newtype C = C (AssocL TyVarId Ty) deriving Show

cnstrTyLookup :: TyVarId → C → Maybe Ty
cnstrTyLookup tv (C s) = lookup tv s

emptyCnstr :: C
emptyCnstr = C []

cnstrTyUnit :: TyVarId → Ty→ C
cnstrTyUnit tv t = C [(tv, t)]

.

Typing Haskell with an Attribute Grammar 47

If cnstrTyUnit is used as an infix operator it is printed as → in the same way as used in
type rules.

Different strategies can be used to copewith constraints[17,29]. Here constraintsC are
used to replace all other references to v by σ, for this reason often named a substitution.
In this version of EH the replacement of type variables with newly types is done imme-
diately after constraints are obtained as to avoid finding a new and probably conflicting
constraint for a type variable. Applying constraints means substituting type variables
with the bindings in the constraints, hence the class Substitutable for those structures
which have references to type variables hidden inside and can replace, or substitute
those type variables:

infixr 6 �

class Substitutable s where
(�) :: C → s→ s
ftv :: s→ TyVarIdL

The operator � applies constraints C to a Substitutable. Function ftv extracts the free
type variable references as a set of TVarId’s.

A C can be applied to a type:

instance Substitutable Ty where
(�) = tyAppCnstr
ftv = tyFtv

This is another place where we use the AG notation and the automatic propagation
of values as attributes throughout the type representation to make the description of
the application of a C to a Ty easier. The function tyAppCnstr is defined in terms of
the following AG. The plumbing required to provide the value of attribute repl (tvs)
available as the result of Haskell function tyAppCnstr (tyFtv) has been omitted:

ATTR TyAGItf AllTy [cnstr : C ||]
ATTR AllAllTy [|| repl : SELF]
ATTR TyAGItf [|| repl : Ty]

SEM Ty
| Var lhs.repl = maybe @repl id (cnstrTyLookup @tv @lhs.cnstr)

ATTR TyAGItf AllTy [|| tvs USE{∪}{ []} : TyVarIdL]

SEM Ty
| Var lhs.tvs = [@tv]

AG: Attribute of type SELF. The type of an attribute of type SELF depends on the
node in which a rule is defined for the attribute. The generated type of an at-
tribute 〈attr〉 for 〈node〉 is equal to the generated Haskell datatype of the same
name 〈node〉. The AG compiler inserts code for building 〈node〉’s from the 〈attr〉 of
the children and other fields. Insertion of this code can be overridden by providing

48 A. Dijkstra and S.D. Swierstra

AG: Attribute together with USE. A synthesized attribute 〈attr〉may be declared to-
gether with USE{〈op〉}{〈zero〉}. The 〈op〉 and 〈zero〉 allow the insertion of copy
rules which behave similar to Haskell’s foldr. The first piece of text 〈op〉 is used to
combine the attribute values of two children by textually placing this text as an op-
erator between references to the attributes of the children. If no child has an 〈attr〉,
the second piece of text 〈zero〉 is used as a default value for 〈attr〉. For example,
tvs USE {‘union‘} {[]} (appearing in pretty printed form as tvs USE{∪}{ []})
gathers bottom-up the free type variables of a type.

The application of a C is straightforwardly lifted to lists:

instance Substitutable a⇒ Substitutable [a] where
s � l = map (s�) l
ftv l = unionL.map ftv $ l

unionL :: Eq a⇒ [[a]]→ [a]
unionL = foldr union []

A C can also be applied to another C:

instance Substitutable C where
s1 @(C sl1) � s2 @(C sl2)

= C (sl1 ++ map (λ(v, t) → (v, s1 � t)) sl′2)

a definition ourselves. In this way a complete copy of the AST can be built as a
Haskell value. For example, via attribute repl a copy of the type is built which only
differs (or, may differ) in the original in the value for the type variable.

where sl′2 = deleteFirstsBy (λ(v1,) (v2,) → v1 ≡ v2) sl2 sl1
ftv (C sl)

= ftv.map snd $ sl

Substituting a substitution is non-commutative as constraints s1 in s1 � s2 take prece-
dence over s2. To make this even clearer all constraints for type variables in s1 are
removed from s2, even though for a list implementation this would not be required.

Computing constraints The only source of constraints is the check fitsIn which deter-
mines whether one type can flow into another one. The previous version of EH could
only do one thing in case a type could not fit in another: report an error. Now, if one
of the types is unknown, which means that it is a type variable, we have the additional
possibility of returning a constraint on that type variable. The implementation fitsIn of
� additionaly has to return constraints:

data FIOut = FIOut{foTy :: Ty , foErrL :: ErrL, foCnstr :: C }
emptyFO = FIOut{foTy = Ty Any, foErrL = [] , foCnstr = emptyCnstr }

.

Typing Haskell with an Attribute Grammar 49

Computation and proper combination of constraints necessitates fitsIn to be rewritten:

fitsIn :: Ty→ Ty→ FIOut
fitsIn ty1 ty2

= f ty1 ty2
where

res t = emptyFO{ foTy = t }
bind tv t = (res t){foCnstr = tv → t }
occurBind v t | v ∈ ftv t = err [Err UnifyOccurs ty1 ty2 v t]

| otherwise = bind v t

comp tf 1 ta1 tf 2 ta2 mkComp
= foldr1 (λfo1 fo2 → if foHasErrs fo1 then fo1 else fo2)

[ffo, afo, rfo]
where ffo = f tf 1 tf 2

fs = foCnstr ffo
afo = f (fs � ta1) (fs � ta2)
as = foCnstr afo
rt = mkComp (as � foTy ffo) (foTy afo)
rfo = emptyFO{ foTy = rt, foCnstr = as � fs}

f Ty Any t2 = res t2
f t1 Ty Any = res t1
f t1 @(Ty Con s1)

t2 @(Ty Con s2)
| s1 ≡ s2 = res t2

f t1 @(Ty Var v1) (Ty Var v2)
| v1 ≡ v2 = res t1

f t1 @(Ty Var v1) t2 = occurBind v1 t2
f t1 t2 @(Ty Var v2) = occurBind v2 t1

f t1 @(Ty App (Ty App (Ty Con c1) ta1) tr1)
t2 @(Ty App (Ty App (Ty Con c2) ta2) tr2)
| hsnIsArrow c1 ∧ c1 ≡ c2
= comp ta2 tr1 ta1 tr2 (λa r → [a] ‘mkTyArrow‘ r)

f t1 @(Ty App tf 1 ta1)
t2 @(Ty App tf 2 ta2)

= comp tf 1 ta1 tf 2 ta2 Ty App
f t1 t2 = err [Err UnifyClash ty1 ty2 t1 t2]
err e = emptyFO{foErrL = e}

Although this version of the implementation of fitsIn resembles the previous one it
differs in the following aspects:

– The datatype FIOut returned by fitsIn has an additional field foCnstr holding found
constraints. This requires constraints to be combined for composite types like the
App variant of Ty.

50 A. Dijkstra and S.D. Swierstra

– The function bind creates a binding for a type variable to a type. The use of bind
is shielded by occurBind which checks if the type variable for which a binding is
created does not occur free in the bound type too. This is to prevent (e.g.) a � a→ a
to succeed. This is because it is not clear if a → a → a should be the resulting
constraint or a → (a → a) → (a → a) or one of infinitely many other possible
solutions. A so called infinite type like this is inhibited by the so called occurs
check.

– An application App recursively fits its components with components of another
App. The constraints from the first fit ffo are applied immediately to the follow-
ing component before fitting that one. This is to prevent a → a � Int → Char
from finding two conflicting constraints [a → Int, a → Char] instead of properly
reporting an error.

Constraints are used to make knowledge found about previously unknown types ex-
plicit. The typing rules in Fig. 6 (and Fig. 7, Fig. 9) in principle do not need to be
changed. The only reason to adapt some of the rules to the variant in Fig. 11 is to clarify
the way constraints are used.

Γ;σk expr� e : σ� C

Γ;σa expr� e2 : � C2

Γ; v→ σk expr� e1 : σa → σ� C1

v fresh

Γ;σk expr� e1 e2 : C2σ� C2..1

(e-app2)

Γp, Γ;σr expr� e : σe � C3

σp pat� p : ; Γp � C2
fit� v1 → v2 � σk : σp → σr � C1

vi fresh

Γ;σk expr� λp→ e : C3σ
p → σe � C3..1

(e-lam2)

(i → σi) ∈ Γ
fit� σi � σk : σ� C
Γ;σk expr� i : σ� C

(e-ident2)

fit� (v1, v2, ..., vn) � σr : (σ1,σ2, ...,σn)� C
→ ...→ σr ≡ σk

vi fresh

Γ;σk expr� ,n : σ1 → ...→ σn → (σ1,σ2, ...,σn)� C
(e-con2)

fit� Int � σk : σ� C
Γ;σk expr� minint . .maxint : σ� C

(e-int2)

Typing Haskell with an Attribute Grammar 51

3.3 Reconstructing Types for Expr

Fig. 11. Type inferencing for expressions (using constraints)

The type rules in Fig. 11 enforcean order in which checking and inferring types has to
be done.

Actually, the rules in Fig. 11 should be even more specific in how constraints flow
around if we want to be closer to the corresponding AG description. The AG specifies
a C to be threaded instead of just returned bottom-up:

ATTR AllExpr [| tyCnstr : C |]
Its use in an expression application is as follows:

SEM Expr
| App loc.knFunTy � [mkNewTyVar @lUniq] ‘mkTyArrow‘ @lhs.knTy

.ty � @arg.tyCnstr � @fTy

AG: Redefining an attribute value. Normally a value for an attribute may be associ-
ated with an attribute only once, using = in a rule. It is an error if multiple rules
for an attribute are present. If � is used instead, any previous definition is overrid-
den and no error message is generated. In this context previous means “textually
occurring earlier”. Because the AG system’s flexibility finds its origin in the in-
dependence of textual locations of declarations and definitions, � should be used
with care. For these notes the order in which redefinitions appear is the same as
their textual appearance in these notes, which again is the same as the sequence of
versions of EH.

This definition builds on top of the previous version by redefining some attributes (in-
dicated by � instead of =). If this happens a reference to the location (in these notes)
of the code on top of which the new code is added can be found5.

To correspond better with the related AG code the rule e-app2 should be:

C1; Γ;σa expr� e2 : � C2

Ck; Γ; v→ Ckσk expr� e1 : σa → σ� C1

v fresh

Ck; Γ;σk expr� e1 e2 : C2σ� C2

(e-app2B)

5 This is not an ideal solution to display combined fragments. A special purpose editor would
probably do a better job of browsing textually separated but logically related pieces of code.

The flow of constraints is made explicit as they are passed through the rules, from
the context (left of �) to a result (right of �). We feel this does not benefit clarity,
even though it is correct. It is our opinion that typing rules serve their purpose best by
providing a basis for proof as well as understanding and discussion. An AG description
serves its purpose best by showing how it really is implemented. Used in tandem they
strengthen each other.

52 A. Dijkstra and S.D. Swierstra

An implementation by necessity imposes additional choices, in order to make a typ-
ing rule into an algorithmic solution. For example, our AG description preserves the
following invariant:

– A resulting type has all known constraints applied to it, here ty.

but as this invariant is not kept for knTy and valGam it requires to

– Explicitly apply known constraints to the inherited known type knTy.
– Explicitly apply known constraints to types from a Γ, here valGam.

The type rules in Fig. 11 do not mention the last two constraint applications (rule e-
app2B does), and this will also be omitted for later typing rules. However, the constraint
applications are shown by the AG code for the App alternative and the following Var
alternative:

SEM Expr
| Var loc.fTy � @lhs.tyCnstr � @gTy

.fo � @fTy � (@lhs.tyCnstr � @lhs.knTy)
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

The rules for constants all resemble the one for Int, rule e-int2. Their implementation
additionaly takes care of constraint handling:

SEM Expr
| IConst CConst

loc.fo � @fTy � (@lhs.tyCnstr � @lhs.knTy)
lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

The handling of products does not differ much from the previous implementation. A
rule e-con2 has been included in the typing rules, as a replacement for rule e-prod1B
(Fig. 7) better resembling its implementation. Again the idea is to exploit that in this
version of EH tupling is the only way to construct an aggregrate value. A proper struc-
ture for its type is (again) enforced by fitsIn.

SEM Expr
| Con loc.fo = let gTy = mkTyFreshProdFrom @lUniq (hsnProdArity @nm)

foKnRes = gTy � (@lhs.tyCnstr � tyArrowRes @lhs.knTy)
in foKnRes{foTy = tyProdArgs (foTy foKnRes)

‘mkTyArrow‘ (foTy foKnRes)}
.ty � foTy @fo

lhs.tyCnstr = foCnstr @fo � @lhs.tyCnstr

Typing Haskell with an Attribute Grammar 53

Finally,

SEM Expr
| Lam loc .(argTy, resTy, funTy)

� let [a, r] = mkNewTyVarL 2 @lUniq
in (a, r, [a] ‘mkTyArrow‘ r)

.foKnFun � @funTy � (@lhs.tyCnstr � @lhs.knTy)
arg .knTy � @argTy

.tyCnstr = foCnstr @foKnFun � @lhs.tyCnstr
body.knTy � @resTy
loc .bodyTyCnstr = @body.tyCnstr

.ty � [@bodyTyCnstr � @arg.ty] ‘mkTyArrow‘ @body.ty

which uses some additional functions for creating type variables

mkNewTyVar :: UID→ Ty
mkNewTyVar u = let (, v) = mkNewUID u in mkTyVar v

mkNewUIDTyVarL :: Int → UID→ ([UID], TyL)
mkNewUIDTyVarL sz u = let vs = mkNewUIDL sz u in (vs, map mkTyVar vs)

mkNewTyVarL :: Int → UID→ TyL
mkNewTyVarL sz u = snd (mkNewUIDTyVarL sz u)

Some observations are in place:

– The main difference with the previous implementation is the use of type variables
to represent unknown knowledge. Previously � was used for that purpose, for ex-
ample, the rule e-lam2 and its implementation show that fresh type variables vi in
ν1 → ν2 are used instead of � → � to enforce a . . → . . structure. If � still would
be used, for example in:

let id = λx→ x
in id 3

the conclusion would be drawn that id :: �→ �, whereas id :: v→ v would later on
have bound v → Int (at the application id 3). So, � represents “unknown knowl-
edge”, a type variable v represents “not yet known knowledge” to which the infer-
encing process later has to refer to make it “known knowledge”.

– Type variables are introduced under the condition that they are “fresh”. For a typ-
ing rule this means that these type variables are not in use elsewhere, often more
concretely specified with a condition v � ftv (Γ). Freshness in the implementation
is implemented via unique identifiers UID.

3.4 Reconstructing for PatExpr

In the previous version of EH we were only interested in bindings for identifiers in a
pattern. The type of a pattern was already known via a corresponding type signature.

54 A. Dijkstra and S.D. Swierstra

Types

Computation of the type ofa pattern is similar toandyetmore straightforward thanfor
expressions. The rule e-pat2 from Fig. 12 binds the identifier to the known type and if
no such known type is available it invents a fresh one, by means of tyEnsureNonAny:

ATTR AllPatExpr [| tyCnstr : C | ty : Ty]

SEM PatExpr
| Var VarAs loc .ty � tyEnsureNonAny @lUniq @lhs.knTy
| VarAs patExpr.knTy = @ty

tyEnsureNonAny :: UID→ Ty→ Ty
tyEnsureNonAny u t = if t � Ty Any then t else mkNewTyVar u

For this version this is no longer the case so the structure of a pattern reveals already
some type structure. Hence we compute types for patterns too and use this type as the
known type if no type signature is available.

σk pat� p : σ; Γp � C

fit� C1σ
k � σd : σ� C2

σd → () ≡ σp

pat� p : σp; Γp � C1

p ≡ p1 p2 ... pn, n � 1

σk pat� p : σ; Γp � C2..1

(p-apptop2)

dom (Γp
1) ∩ dom (Γp

2) = ∅
σa

1

pat� p2 : ; Γp
2 � C2

pat� p1 : σd → (σa
1,σa

2, ...,σa
n); Γp

1 � C1
pat� p1 p2 : C2(σd → (σa

2, ...,σa
n)); Γp

1, Γp
2 � C2..1

(p-app2)

σk � �

σk pat� i : σk; [i → σk]� []
(p-var2)

vi fresh
pat� I : σ; (v1, v2, ..., vn) → (v1, v2, ..., vn)� []

(p-con2)

For tuples we again make use of the fact that the Con alternative will always represent
a tuple. When datatypes are introduced (not part of these notes) this will no longer be

Typing Haskell with an Attribute Grammar 55

Fig. 12. Type inferencing for pattern (using constraints)

the case. Here, we already make the required rule p-con2 more general than is required
here because we already prepare for datatypes.

A pattern (in essence) can be represented by a functionσ→ (σ1, ...) taking avalueof
some type σ and dissecting it into a tuple (σ1, ...) containing all its constituents. For
now, because we have only tuples to dissect, the function returned by the Con alternative
is just the identity on tuples of the correct size. The application rule p-app2 consumes
an element of this tuple representing the dissected value and uses it for checking and
inferring the constituent.

The implementation of this representation convention returns the dissecting function
type in patFunTy:

ATTR PatExpr [|| patFunTy : Ty]

SEM PatExpr
| Con loc.patFunTy = let prTy = mkTyFreshProdFrom @lUniq (hsnProdArity @nm)

in ([prTy] ‘mkTyArrow‘ prTy)
| App lhs.patFunTy = @func.patFunTy
| ∗ − App Con

lhs.patFunTy = Ty Any

The dissecting function type patFunTy is constructed from fresh type variables. Each
occurrence of a tuple pattern deals with different unknown types and hence fresh type
variables are needed. The availability of polymorphism in later versions of EH allows
us to describe this in a more general way.

At AppTop of PatExpr the function type σ → (σ1, ...) describing the dissection is
split into the type σ (attribute knResTy) of the pattern and the tuple type (σ1, ...) (at-
tribute knProdTy) holding its constituents. The distribution of the types of the fields of
knProdTy was described in the previous version of EH.

SEM PatExpr
| AppTop loc.patFunTy = @patExpr.patFunTy

.(knResTy, knProdTy) � tyArrowArgRes @patFunTy

Finally, the type itself and additional constraints are returned:

SEM PatExpr
| IConst loc .ty = tyInt
| CConst loc .ty = tyChar
| AppTop loc .fo = @lhs.knTy � @knResTy

.ty = foTy @fo
patExpr.tyCnstr = foCnstr @fo � @lhs.tyCnstr
lhs .ty = @patExpr.tyCnstr � @ty

| App arg .knTy � @func.tyCnstr � @knArgTy
| Con loc .ty = Ty Any

56 A. Dijkstra and S.D. Swierstra

The careful reader may have observed that the direction of � for fitting actual (synthe-
sized, bottom-up) and known type (inherited, top-down) is the opposite of the direction
used for expressions. This is a result of a difference in the meaning of an expression and
a pattern. An expression builds a value from bottom to top as seen in the context of an
abstract syntax tree. A pattern dissects a value from top to bottom. The flow of data is
opposite, hence the direction of � too.

3.5 Declarations

Again, at the level of declarations all is tied together. Because we first gather infor-
mation about patterns and then about expressions two separate threads for gathering
constraints are used, patTyCnstr and tyCnstr respectively.

SEM Expr
| Let decls.patTyCnstr = @lhs.tyCnstr

.tyCnstr = @decls.patTyCnstr

ATTR AllDecl [| tyCnstr : C patTyCnstr : C |]
SEM Decl
| Val patExpr.tyCnstr = @lhs.patTyCnstr

lhs .patTyCnstr = @patExpr.tyCnstr
expr .tyCnstr = @lhs.tyCnstr

SEM AGItf
| AGItf expr .tyCnstr = emptyCnstr

If a type signature has been given it is used as the known type for both expression and
pattern. If not, the type of a pattern is used as the known type for an expression.

SEM Decl
| Val expr.knTy = if @hasTySig then @knTy else @patExpr.ty

3.6

Partial type signatures allow the programmer to specify only a part of a type in a type
signature. The description of the implementation of this feature is separated from the
discussion of other features to show the effects of an additional feature on the compiler.
In other words, the following is an impact analysis.

First, both abstract syntax and the parser (not included in these notes)containan addi-
tional alternative for parsing the ”...” notation chosen for unspecified type information
designated by Wild for wildcard:

DATA TyExpr
| Wild

A wildcard type is treated in the same way as a type variable as it also represents un-
known type information:

Typing Haskell with an Attribute Grammar 57

Partial Type Signatures: A Test Case for Extendibility

SEM TyExpr
| Wild loc.tyVarId = @lUniq

.tgi = TyGamInfo (mkNewTyVar @tyVarId)

SEM TyExpr
| Wild lhs.ty = tgiTy @tgi

Changes also have to be made to the omitted parts of the implementation, in particular
the pretty printing of the AST and generation of unique identifiers. We mention the
necessity of this but omit the relevant code.

The pretty printing of a type signature is enhanced a bit further by either printing the
type signature (if no wildcard types are present in it) or by printing the type of the type
signature combined with all found constraints. The decision is based on the presence of
wildcard type variables in the type signature:

ATTR TyExpr [|| tyVarWildL USE{++}{ []} : TyVarIdL]

SEM TyExpr
| Wild lhs.tyVarWildL = [@tyVarId]

The set of all constraints is retrieved at the root of the AST and passed back into the
tree:

ATTR AllDecl [finValGam : ValGam ||]
ATTR AllNT [finTyCnstr : C ||]
SEM Expr
| Let decls.finValGam = @lhs.finTyCnstr � @lValGam

SEM Decl
| TySig loc .finalTy = vgiTy.fromJust.valGamLookup @nm

$ @lhs.finValGam

SEM AGItf
| AGItf expr .finTyCnstr = @expr.tyCnstr

The third version of EH adds polymorphism, in particular so-called parametric poly-
morphism which allows functions to be used on arguments of differing types. For ex-
ample

let id :: a→ a
id = λx→ x
v = (id 3, id ’x’)

in v

gives v :: (Int, Char) and id :: ∀ a.a → a. The polymorphic identity function id accepts
a value of any type a, giving back a value of the same type a. Type variables in the type

58 A. Dijkstra and S.D. Swierstra

4 EH 3: Polymorphic Type Inferencing

signature are used to specify polymorphic types. Polymorphism of a type variable in a
type is made explicit in the type by the use of a universal quantifier forall, or ∀. The
meaning of this quantifier is that a value with a universally quantified type can be used
with different types for the quantified type variables.

The type signature may be omitted, and in that case the same type will still be inferred.
However, the reconstruction of the type of a value for which the type signature is omit-
ted has its limitations, the same as for Haskell98 [31]. Haskell98 also restricts what can
be described by type signatures.

Polymorphism is allowed for identifiers bound by a let-expression, not for identifiers
bound by another mechanism such as parameters of a lambda expression. The following
variant of the previous example is therefore not to be considered correct:

let f :: (a→ a)→ Int
f = λi→ i 3
id :: a→ a
id = λx→ x

in f id

It will give the following output:

let f :: (a -> a) -> Int

f = \i -> i 3

{- ***ERROR(S):

In ‘\i -> i 3’:

... In ‘i’:

Type clash:

failed to fit: c_2_0 -> c_2_0 <= v_7_0 -> Int

problem with : c_2_0 <= Int -}

id :: a -> a

id = \x -> x

{- [id:forall a . a -> a, f:forall a . (a -> a) -> Int] -}

in f id

The problem here is that the polymorphism of f in a means that the caller of f can freely
choose what this a is for a particular call. However, from the viewpoint of the body of
f this limits the choice of a to no choice at all. If the caller has all the freedom to make
the choice, the callee has none. In our implementation this is encoded as a type constant
c_ chosen for a during type checking the body of f . This type constant by definition is
a type a programmer can never define or denote. The consequence is that an attempt to
use i in the body of f , which has type c_..→c_.. cannot be used with an Int. The use
of type constants will be explained later.

Another example of the limitations of polymorphism in this version of EH is the fol-
lowing variation:

Typing Haskell with an Attribute Grammar 59

let f = λi→ i 3
id :: a→ a

in let v = f id
in f

for which the compiler will infer the following types:

let f = \i -> i 3

id :: a -> a

{- [f:forall a . (Int -> a) -> a, id:forall a . a -> a] -}

in let v = f id

{- [v:Int] -}

in f

EH version 3 allows parametric polymorphism but not yet polymorphic parameters. The
parameter i has a monomorphic type, which is made even more clear when we make an
attempt to use this i polymorphically in:

let f = λi→ (i 3, i ’x’)
id = λx→ x

in let v = f id
in v

about which the compiler will complain:

let f = \i -> (i 3,i ’x’)

{- ***ERROR(S):

In ‘\i -> (i 3,i ’x’)’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

id = \x -> x

{- [id:forall a . a -> a, f:forall a . (Int -> a) -> (a,a)] -}

in let v = f id

{- [v:(Int,Int)] -}

in v

Because i is not allowed to be polymorphic it can either be used on Int or Char, but not
both.

These problems can be overcome by allowing higher ranked polymorphism in type
signatures. Later versions of EH deal with this problem, but this is not included in these
notes. This version of EH resembles Haskell98 in these restrictions.

The reason not to allow explicit types to be of assistance to the type inferencer is that
Haskell98 and this version of EH have as a design principle that all explicitly specified

60 A. Dijkstra and S.D. Swierstra

types in a program are redundant. That is, after removal of explicit type signatures, the
type inferencer can still reconstruct all types. It is guaranteed that all reconstructed types
are the same as the removed signatures or more general, that is, the type signatures are
a special case of the inferred types. This guarantee is called the principal type property
[9,26,18]. However, type inferencing also has its limits. In fact, the richer a type system
becomes, the more difficult it is for a type inferencing algorithm to make the right choice
for a type without the programmer specifying additional helpful type information.

4.1

The type language for this version of EH adds quantification by means of the universal
quantifier ∀:

σ = Int | Char
| (σ, ...,σ)
| σ→ σ
| v | f
| ∀α.σ

A f stands for a fixed type variable, a type variable which may not be constrained but
still stands for an unknown type. A v stands for a plain type variable as used in the
previous EH version. A series of consecutive quantifiers in ∀α1.∀α2. ...σ is abbreviated
to ∀α.σ.

The typelanguagesuggests that a quantifier may occur anywhere in a type. This is not
the case, quantifiers may only be on the top of a type; this version of EH takes care to
ensure this. A second restriction is that quantified types are present only in a Γ whereas
no ∀’s are present in types used throughout type inferencing expressions and patterns.
This is to guarantee the principle type property.

The corresponding abstract syntax for a type needs additional alternative to represent
a quantified type. For a type variable we also have to remember to which category it
belongs, either plain or fixed:

DATA Ty
| Var tv : {TyVarId }

categ : TyVarCateg

DATA TyVarCateg
| Plain
| Fixed

DATA Ty
| Quant tv : {TyVarId }

ty : Ty

SET AllTyTy = Ty

Typing Haskell with an Attribute Grammar 61

Type Language

SET AllTy = AllTyTy
SET AllAllTy = AllTy TyVarCateg

together with convenience functions for constructing these types:

mkTyVar :: TyVarId → Ty
mkTyVar tv = Ty Var tv TyVarCateg Plain

mkTyQu :: TyVarIdL→ Ty→ Ty
mkTyQu tvL t = foldr (λtv t → Ty Quant tv t) t tvL

We will postpone the discussion of type variable categories until section 91.
The syntax of this version of EH only allows type variables tobe specified as part of a

type signature. The quantifier ∀ cannot be explicitly denoted. We only need to extend
the abstract syntax for types with an alternative for type variables:

DATA TyExpr
| Var nm : {HsName}

4.2

Compared to the previous version the type inferencing process does not change much.
Because types used throughout the type inferencing of expressions and patterns do not
contain ∀ quantifiers, nothing has to be changed there.

Changes have to be made to the handling of declarations and identifiers though.This is
because polymorphism is tied up with the way identifiers for values are introduced and
used.

A quantified type, also often named type scheme, is introduced in rule e-let3 and rule e-
let-tysig3 and instantiated in rule e-ident3, see Fig. 13. We will first look at the instan-
tiation.

Instantiation A quantified type is introduced in the type inferencing process whenever
a value identifier having that type is occurs in an expression:

SEM Expr
| Var loc.fTy � @lhs.tyCnstr � tyInst @lUniq @gTy

We may freely decide what type the quantified type variables may have as long as each
type variable stands for a monomorphic type. However, at this point it is not known
which type a type variable stands for, so fresh type variables are used instead. This
is called instantiation, or specialization. The resulting instantiated type partakes in the
inference process as usual.

The removal of the quantifier and replacement of all quantified type variables with fresh
type variables is done by tyInst:

.

62 A. Dijkstra and S.D. Swierstra

Type Inferencing

Γ;σk expr� e : σ� C

Γq, Γ;σk expr� e : σe � C3

Γq ≡ [(i → ∀α.σ) | (i → σ) ← C2..1Γp,α ≡ ftv (σ) − ftv (C2..1Γ)]

Γp, Γ;σp expr� ei : � C2

�
pat� p : σp; Γp � C1

Γ;σk expr� let p = eiin e : σe � C3..1

(e-let3)

(Γq − [i →] ++ [i → σq]) ++ Γ;σk expr� e : σe � C3

Γq ≡ [(i → ∀α.σ) | (i → σ) ← C2..1Γp,α ≡ ftv (σ) − ftv (C2..1Γ)]

(Γp − [i →] ++ [i → σq]) ++ Γ;σj expr� ei : � C2

σq ≡ ∀α.σi

σj ≡ [αj → fj] σi, fj fresh
α ≡ ftv (σi)

p ≡ i ∨ p ≡ i @...

σi pat� p : ; Γp � C1

Γ;σk expr� let i :: σi; p = eiin e : σe � C3..1

(e-let-tysig3)

(i → ∀[αj].σi) ∈ Γ
fit� [αj → vj] σi � σk : σ� C

vj fresh

Γ;σk expr� i : σ� C
(e-ident3)

tyInst′ :: (TyVarId → Ty) → UID→ Ty→ Ty
tyInst′ mkFreshTy uniq ty

= s � ty′
where i u (Ty Quant v t) = let (u′, v′) = mkNewUID u

(s, t′) = i u′ t
in ((v → (mkFreshTy v′)) � s, t′)

i t = (emptyCnstr, t)
(s, ty′) = i uniq ty

tyInst :: UID→ Ty→ Ty
tyInst = tyInst′ mkTyVar

Typing Haskell with an Attribute Grammar 63

Fig. 13. Type inferencing for expressions with quantifier ∀

Function tyInst strips all quantifiers and substitutes the quantified type variables with
fresh ones. It is assumed that quantifiers occur only at the top of a type.

Quantification The other way around, quantifying a type, happens when a type is
bound to a value identifier and added to a Γ. The way this is done varies with the
presence of a type signature. Rule e-let3 and rule e-let-tysig3 (Fig. 13) specify the
respective variations.

A type signature itself is specified without explicit use of quantifiers. These need to be
added for all introduced type variables, except the ones specified by means of ‘...’ in
a partial type signature:

SEM Decl
| TySig loc.sigTy = tyQuantify (∈ @tyExpr.tyVarWildL) @tyExpr.ty

.gamSigTy � @sigTy

A type signature simply is quantified over all free type variables in the type using

tyQuantify :: (TyVarId → Bool)→ Ty→ Ty
tyQuantify tvIsBound ty = mkTyQu (filter (¬.tvIsBound) (ftv ty)) ty

Type variables introduced by a wildcard may not be quantified over because the type
inferencer will fill in the type for those type variables.

We now run into a problem which will be solved no sooner than the next version of EH.
In a declaration of a value (variant Val of Decl) the type signature acts as a known type
knTy against which checking of the value expression takes place. Which type do we use
for that purpose, the quantified sigTy or the unquantified tyExpr.ty?

– Suppose the tyExpr.ty is used. Then, for the erroneous

let id :: a→ a
id = λx→ 3

in ...

we end up with fitting v1 → Int � a→ a. This can be accomplished via constraints
[v1 → Int, a → Int]. However, a was supposed to be chosen by the caller of id. Now
it is constrained by the body of id to be an Int. Somehow constraining a whilst being
used as part of a known type for the body of id must be inhibited.

– Alternatively, sigTy may be used. However, the inferencing process and the fitting
done by fitsIn cannot (yet) handle types with quantifiers.

For now, this can be solved by replacing all quantified type variables of a known type
with type constants:

SEM Decl
| Val loc.knTy � tyInstKnown @lUniq @sigTy

64 A. Dijkstra and S.D. Swierstra

.

This changes the category of the fresh type variable replacing the quantified type vari-
able to ‘fixed’. A fixed type variable is like a plain type variable but may not be con-
strained, that is, bound to another type. This means that fitsIn has to be adapted to
prevent this from happening. The difference with the previous version only lies in the
handling of type variables. Type variables now may be bound if not fixed, and to be
equal only if their categories match too. For brevity the new version of fitsIn is omitted.

Generalization/quantification of inferred types How do we determine if a type for
some expression bound to an identifier in a value declaration is polymorphic? If a (non
partial) type signature is given, the signature itself describes the polymorphism via type
variables explicitly. However, if for a value definition a corresponding type signature is
missing, the value definition itself gives us all the information we need. We make use
of the observation that a binding for a value identifier acts as a kind of boundary for that
expression.

let id = λx→ x
in ...

The only way the value associated with id ever will be used outside the expression
bound to id, is via the identifier id. So, if the inferred type v1 → v1 for the expression
λx → x has free type variables (here: [v1]) and these type variables are not used in the
types of other bindings, in particular those in the global Γ, we know that the expression
λx → x nor any other type will constrain those free type variables. The type for such a
type variable apparently can be freely chosen by the expression using id, which is ex-
actly the meaning of the universal quantifier. These free type variables are the candidate
type variables over which quantification can take place, as described by the typing rules
for let-expressions in Fig. 13 and its implementation:

SEM Expr
| Let loc .lSubsValGam = @decls.tyCnstr � @lValGam

.gSubsValGam = @decls.tyCnstr � @gValGam

by using a variant of tyInst:

tyInstKnown :: UID→ Ty→ Ty
tyInstKnown = tyInst′ (λtv→ Ty Var tv TyVarCateg Fixed)

.gTyTvL = ftv @gSubsValGam

.lQuValGam = valGamQuantify @gTyTvL @lSubsValGam
body.valGam � @lQuValGam

‘gamPushGam‘ @gSubsValGam

All available constraints in the form of decls.tyCnstr are applied to both global
(gValGam) and local (lValGam) Γ. All types in the resulting local lSubsValGam are
then quantified over their free type variables, with the exception of those referred to
more globally, the gTyTvL. We use valGamQuantify to accomplish this:

.

Typing Haskell with an Attribute Grammar 65

valGamQuantify :: TyVarIdL→ ValGam→ ValGam
valGamQuantify globTvL = valGamMapTy (λt → tyQuantify (∈ globTvL) t)

valGamMapTy :: (Ty→ Ty) → ValGam→ ValGam
valGamMapTy f = gamMapElts (λvgi→ vgi{vgiTy = f (vgiTy vgi)})
gamMap :: ((k, v)→ (k′, v′))→ Gam k v→ Gam k′ v′
gamMap f (Gam ll) = Gam (map (map f) ll)

gamMapElts :: (v→ v′)→ Gam k v→ Gam k v′
gamMapElts f = gamMap (λ(n, v)→ (n, f v))

The condition that quantification only may be done for type variables not occurring in
the global Γ is a necessary one. For example:

let h :: a→ a→ a
f = λx→ let g = λy→ (h x y, y)

in g 3
in f ’x’

If the type g :: a → (a, a) would be concluded, g can be used with y an Int parameter,
as in the example. Function f can then be used with x a Char parameter. This would go
wrong because h assumes the types of its parameters x and y are equal. So, this justifies
the error given by the compiler for this version of EH:

let h :: a -> a -> a

f = \x -> let g = \y -> (h x y,y)

{- [g:Int -> (Int,Int)] -}

in g 3

{- [f:Int -> (Int,Int), h:forall a . a -> a -> a] -}

in f ’x’

{- ***ERROR(S):

In ‘f ’x’’:

... In ‘’x’’:

Type clash:

failed to fit: Char <= Int

problem with : Char <= Int -}

All declarations in a let-expression together form what in Haskell is called a binding
group. Inference for these declarations is done together and all the types of all identifiers
are quantified together. The consequence is that a declaration that on its own would be
polymorphic, may not be so in conjunction with an additional declaration which uses
the previous declaration:

let id1 = λx→ x
id2 = λx→ x
v1 = id1 3

in let v2 = id2 3
in v2

66 A. Dijkstra and S.D. Swierstra

The types of the function id1 and value v1 are inferred in the same binding group.
However, in this binding group the type for id1 is v1 → v1 for some type variable
v1, without any quantifier around the type. The application id1 3 therefore infers an
additional constraint v1 → Int, resulting in type Int → Int for id1

let id1 = \x -> x

id2 = \x -> x

v1 = id1 3

{- [v1:Int, id2:forall a . a -> a, id1:Int -> Int] -}

in let v2 = id2 3

{- [v2:Int] -}

in v2

On the other hand, id2 is used after quantification, outside the binding group, with type
∀ a.a→ a. The application id2 3 will not constrain id2.

In Haskell binding group analysis will find groups of mutually dependent definitions,
each of these called a binding group. These groups are then ordered according to “define
before use” order. Here, for EH, all declarations in a let-expression automatically form
a binding group, the ordering of two binding groups d1 and d2 has to be done explicitly
using sequences of let expressions: let d1 in let d2 in....

Being togetherin a binding group can create a problemfor inferencing mutually recur-
sive definitions, for example:

let f1 = λx→ g1 x
g1 = λy→ f1 y
f2 :: a→ a
f2 = λx→ g2 x
g2 = λy→ f2 y

in 3

This results in

let f1 = \x -> g1 x

g1 = \y -> f1 y

f2 :: a -> a

f2 = \x -> g2 x

g2 = \y -> f2 y

{- [g2:forall a . a -> a, g1:forall a . forall b . a -> b

, f1:forall a . forall b . a -> b, f2:forall a . a -> a] -}

in 3

For f1 it is only known that its type is v1 → v2. Similarly g1 has a type v3 → v4. More
type information cannot be constructed unless more information is given as is done for
f2. Then also for g2 may the type ∀ a.a→ a be reconstructed.

Typing Haskell with an Attribute Grammar 67

Type expressions Finally, type expressions need to return a type where all occurrences
of type variable names (of type HsName) coincide with type variables (of type TyVarId).
Type variable names are identifiers just as well so a TyGam similar to ValGam is used
to map type variable names to freshly created type variables.

SEM TyExpr
| Var (loc.tgi, lhs.tyGam) = case tyGamLookup @nm @lhs.tyGam of

Nothing→ let t = mkNewTyVar @lUniq
tgi = TyGamInfo t

in (tgi, gamAdd @nm tgi @lhs.tyGam)
Just tgi → (tgi, @lhs.tyGam)

SEM TyExpr
| Var lhs.ty = tgiTy @tgi

Either a type variable is defined in tyGam, in that case the type bound to the identifier
is used, otherwise a new type variable is created.

AG system. At the start of these notes we did make a claim that our “describe sepa-
rately” approach contributes to a better understood implementation of a compiler, in
particular a Haskell compiler. Is this true? We feel that this is the case, and thus the
benefits outweigh the drawbacks, based on some observations made during this project:

The AG system provides mechanisms to split a description into smaller fragments, com-
bine those fragments and redefine part of those fragments. An additional fragment man-
agement system did allow us to do the same with Haskell fragments. Both are essential
in the sense that the simultaneous ‘existence’ of a sequence of compiler versions, all in
working order when compiled, with all aspects described with the least amount of du-
plication, presentable in a consistent form in these notes could not have been achieved
without these mechanisms and supporting tools.

The AG system allows focusing on the places where something unusual needs to be
done, similar to other approaches [24]. In particular, copy rules allow us to forget about
a large amount of plumbing.

The complexity of the languageHaskell, its semantics, and the interactionbetweenfea-
tures is not reduced. However, it becomes manageable and explainable when divided
into small fragments. Features which are indeed independent can also be described
independently of each other by different attributes. Features which evolve through dif-
ferent versions, like the type system, can also be described separately, but can still be
looked upon as a group of fragments. This makes the variation in the solutions explicit
and hence increases the understanding of what really makes the difference between two
subsequent versions.

68 A. Dijkstra and S.D. Swierstra

.

5 Remarks, Experiences and Conclusion

On thedownside, fragments for one aspect but for different compiler versionsend up in
different sections of these notes. This makes their understanding more difficult because
one now has to jump between pages. This is a consequence of the multiple dimensions
we describe: variation in language elements (new AST), additional semantics (new at-
tributes) and variation in the implementation. Paper, on the other hand, provides by
definition a linear, one dimensional rendering of this multidimensional view. We can
only expect this to be remedied by the use of proper tool support (like a fragment ed-
itor or browser). On paper, proper cross referencing, colors, indexing or accumulative
merging of text are most likely to be helpful.

The AG system, though in its simplicity surprisingly usable and helpful, could beim-
proved in many areas. For example, no type checking related to Haskell code for at-
tribute definitions is performed, nor will the generated Haskell code when compiled by
a Haskell compiler produce sensible error messages in terms of the original AG code.
The AG system also lacks features necessary for programming in the large. For exam-
ple, all attributes for a node live in a global namespace for that node instead of being
packaged in some form of module.

Performance is expected to give problems for large systems.Thisseemstobeprimarily
caused by the simple translation scheme in which all attributes together live in a tuple
just until the program completes. This inhibits garbage collection of intermediate at-
tributes that are no longer required. It also stops GHC from performing optimizations;
informal experimentation with a large AG program resulted in GHC taking approxi-
mately 10 times more time with optimization flags on. The resulting program only ran
approximately 15% faster. The next version of the AG system will be improved in this
area [35].

AG vs Haskell. Is the AG system a better way to do Haskell programming? In general,
no, but for Haskell programs which can be described by a catamorphism the answer
is yes (see also section 1.4). In general, if the choices made by a function are mainly
driven by some datastructure, it is likely that this datastructure can be described by an
AST and the function can be described by the AG’s attribution. This is the case for an
abstract syntax tree or analysis of a single type. It is not the case for a function like fitsIn
(section 35) in which decisions are made based on the combination of two (instead of
just one) type.

About these notes EH and its code. The linear presentation of code and explanation
might suggest that this is also the order in which the code and these notes came into
existence. This is not the case. A starting point was created by programming a final
version (at that time EH version 6, not included in these notes). From this version the
earlier versions were constructed. After that, later versions were added. However, these
later versions usually needed some tweaking of earlier versions. The consequence of
this approach is that the rationale for design decisions in earlier versions become clear
only in later versions. For example, an attribute is introduced only so later versions only

Typing Haskell with an Attribute Grammar 69

need to redefine the rule for this single attribute. However, the initial rule for such an
attribute often just is the value of another attribute. At such a place the reader is left
wondering. This problem could be remedied by completely redefining larger program
fragments. This in turn decreases code reuse. Reuse, that is, sharing of common code
turned out to be beneficial for the development process as the use of different contexts
provides more opportunities to test for correctness. No conclusion is attached to this
observation, other than being another example of the tension between clarity of expla-
nation and the logistics of compiler code management.

Combining theory and practice. Others have described type systems in a practical set-
ting as well. For example, Jones [21] describes the core of Haskell98 by a monadic style
type inferencer. Pierce [34] explains type theory and provides many small implemen-
tations performing (mainly) type checking for the described type systems in his book.
On the other hand, only recently the static semantics of Haskell has been described
formally [14]. Extensions to Haskell usually are formally described but once they find
their way into a production compiler the interaction with other parts of Haskell is left
in the open or is at best described in the manual.

The conclusion of these observations might be that a combined description of a lan-
guage, its semantics, its formal analysis (like the type system), and its implementation
is not feasible. Whatever the cause of this is, certainly one contributing factor is the
sheer size of all these aspects in combination. We feel that our approach contributes
towards a completer description of Haskell, or any other language if described by the
AG system. Our angle of approach is to keep the implementation and its explanation
consistent and understandable at the same time. However, this document clearly is not
complete either. Formal aspects are present, let alone a proof that the implementation is
sound and complete with respect to the formal semantics. Of course one may wonder if
this is at all possible; in that case our approach may well be a feasible second best way
of describing a compiler implementation.

EH vs Haskell. The claim of our title also is that we provide an implementation of
Haskell, thereby implying recent versions of Haskell, or at least Haskell98. However,
these notes does not include the description of (e.g.) a class system; the full version of
EH however does.

Wethank both (anonymous)reviewers for their extremelyvaluable
and helpful comments.

References

1. The Glasgow Haskell Compiler. http://www.haskell.org/ghc/, 2004.
2. Martin Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
3. Arthur Baars. Attribute Grammar System. http://www.cs.uu.nl/groups/ST/twiki/
bin/view/Center/AttributeGrammarSystem, 2004.

70 A. Dijkstra and S.D. Swierstra

Acknowledgements.

5. Urban Boquist. Code Optimisation Techniques for Lazy Functional Languages, PhD Thesis.
Chalmers University of Technology, 1999.

6. Urban Boquist and Thomas Johnsson. The GRIN Project: A Highly Optimising Back End
For Lazy Functional Languages. In Selected papers from the 8th International Workshop on
Implementation of Functional Languages, 1996.

7. Didier Botlan, Le and Didier Remy. ML-F, Raising ML to the Power of System F. In ICFP,
2003.

8. Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Pro-
ceedings of Principles of Programming Languages (POPL), pages 207–212. ACM, ACM,
1982.

9. Luis Damas and Robin Milner. Principal type-schemes for functional programs. In 9th
symposium Principles of Programming Languages, pages 207–212. ACM Press, 1982.

10. Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Specification of the
Haskell 98 Module System. In Haskell Workshop, pages 17–29, 2002.

11. Atze Dijkstra. EHC Web. http://www.cs.uu.nl/groups/ST/Ehc/WebHome, 2004.
12. Atze Dijkstra and Doaitse Swierstra. Explicit implicit parameters. Technical Report UU-

CS-2004-059, Institute of Information and Computing Science, 2004.
13. Atze Dijkstra and Doaitse Swierstra. Typing Haskell with an Attribute Grammar (Part I).

Technical Report UU-CS-2004-037, Department of Computer Science, Utrecht University,
2004.

14. Karl-Filip Faxen. A Static Semantics for Haskell. Journal of Functional Programming,
12(4):295, 2002.

15. Benedict R. Gaster and Mark P. Jones. A Polymorphic Type System for Extensible Records
and Variants. Technical Report NOTTCS-TR-96-3, Languages and Programming Group,
Department of Computer Science, Nottingham, November 1996.

16. Cordelia Hall, Kevin Hammond, Simon Peyton Jones, and Philip Wadler. Type Classes in
Haskell. ACM TOPLAS, 18(2):109–138, March 1996.

17. Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Generalizing Hindley-Milner
Type Inference Algorithms. Technical Report UU-CS-2002-031, Institute of Information
and Computing Science, University Utrecht, Netherlands, 2002.

4. Richard S. Bird. Using Circular Programs to Eliminate Multiple Traversals of Data. Acta
Informatica, 21:239–250, 1984.

19. Thomas Johnsson. Attribute grammars as a functional programming paradigm. In Functional
Programming Languages and Computer Architecture, pages 154–173, 1987.

20. Mark P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.
21. Mark P. Jones. Typing Haskell in Haskell. http://www.cse.ogi.edu/ mpj/thih/, 2000.
22. Mark P. Jones and Simon Peyton Jones. Lightweight Extensible Records for Haskell. In

Haskell Workshop, number UU-CS-1999-28. Utrecht University, Institute of Information and
Computing Sciences, 1999.

23. M.F. Kuiper and S.D. Swierstra. Using Attribute Grammars to Derive Efficient Functional
Programs. In Computing Science in the Netherlands CSN’87, November 1987.

24. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In Types In Languages Design And Implementation, pages 26–37,
2003.

18. J.R. Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the American Mathematical Society, 146:29–60, December 1969.

Typing Haskell with an Attribute Grammar 71

25. Konstantin Laufer and Martin Odersky. Polymorphic Type Inference and Abstract Data
Types. Technical Report LUC-001, Loyola University of Chicago, 1994.

26. R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17(3), 1978.

27. John C. Mitchell and Gordon D. Plotkin. Abstract Types Have Existential Type. ACM
TOPLAS, 10(3):470–502, July 1988.

28. Martin Odersky and Konstantin Laufer. Putting Type Annotations to Work. In Principles of
Programming Languages, pages 54–67, 1996.

29. Martin Odersky, Martin Sulzmann, and Martin Wehr. Type Inference with Constrained
Types. In Fourth International Workshop on Foundations of Object-Oriented Programming
(FOOL 4), 1997.

30. Nigel Perry. The Implementation of Practical Functional Programming Languages, 1991.
31. Simon Peyton Jones. Haskell 98, Language and Libraries, The Revised Report. Cambridge

Univ. Press, 2003.
32. Simon Peyton Jones and Mark Shields. Practical type inference for arbitrary-rank types.
http://research.microsoft.com/Users/simonpj/papers/putting/index.htm,
2004.

33. Simon L. Peyton Jones. The Implementation of Functional Programming Languages. Pren-
tice Hall, 1987.

34. Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.
35. Joao Saraiva. Purely Functional Implementation of Attribute Grammars. PhD thesis, Utrecht

University, 1999.
36. Chung-chieh Shan. Sexy types in action. ACM SIGPLAN Notices, 39(5):15–22, May 2004.
37. Mark Shields and Simon Peyton Jones. First-class Modules for Haskell. In Ninth Inter-

national Conference on Foundations of Object-Oriented Languages (FOOL 9), Portland,
Oregon, December 2001.

38. Utrecht University Software Technology Group. UUST library.
http://cvs.cs.uu.nl/cgi-bin/cvsweb.cgi/uust/, 2004.

39. S.D. Swierstra, P.R. Azero Alocer, and J. Saraiava. Designing and Implementing Com-
binator Languages. In Doaitse Swierstra, Pedro Henriques, and José Oliveira, editors,
Advanced Functional Programming, Third International School, AFP’98, number 1608 in
LNCS, pages 150–206. Springer-Verlag, 1999.

42. Philip Wadler. Deforestation: transforming programs to eliminate trees. In Theoretical Com-
puter Science, (Special issue of selected papers from 2’nd European Symposium on Pro-
gramming), number 73, pages 231–248, 1990.

40. Simon Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
41. Phil Wadler. Theorems for free! In 4’th International Conference on Functional Program-

ming and Computer Architecture, September 1989.

72 A. Dijkstra and S.D. Swierstra

Programming with Arrows

John Hughes

Department of Computer Science and Engineering,
Chalmers University of Technology,

S-41296 Göteborg, Sweden
rjmh@cs.chalmers.se

1 Introduction

1.1 Point-Free Programming

Consider this simple Haskell definition, of a function which counts the number
of occurrences of a given word w in a string:

count w = length . filter (==w) . words

This is an example of “point-free” programming style, where we build a function
by composing others, and make heavy use of higher-order functions such as
filter. Point-free programming is rightly popular: used appropriately, it makes
for concise and readable definitions, which are well suited to equational reasoning
in the style of Bird and Meertens [2]. It’s also a natural way to assemble programs
from components, and closely related to connecting programs via pipes in the
UNIX shell.

Now suppose we want to modify count so that it counts the number of
occurrences of a word in a file, rather than in a string, and moreover prints the
result. Following the point-free style, we might try to rewrite it as

count w = print . length . filter (==w) . words . readFile

But this is rejected by the Haskell type-checker! The problem is that readFile
and print have side-effects, and thus their types involve the IO monad:

readFile :: String -> IO String
print :: Show a => a -> IO ()

Of course, it is one of the advantages of Haskell that the type-checker can distin-
guish expressions with side effects from those without, but in this case we pay a
price. These functions simply have the wrong types to compose with the others
in a point-free style.

Now, we can write a point-free definition of this function using combinators
from the standard Monad library. It becomes:

count w = (>>=print) .
liftM (length . filter (==w) . words) .
readFile

But this is no longer really perspicuous. Let us see if we can do better.

V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp. 73–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

74 J. Hughes

In Haskell, functions with side-effects have types of the form a -> IO b. Let
us introduce a type synonym for this:

type Kleisli m a b = a -> m b

So now we can write the types of readFile and print as

readFile :: Kleisli IO String String
print :: Show a => Kleisli IO a ()

We parameterise Kleisli over the IO monad because the same idea can be used
with any other one, and we call this type Kleisli because functions with this
type are arrows in the Kleisli category of the monad m.

Now, given two such functions, one from a to b, and one from b to c, we can
“compose” them into a Kleisli arrow from a to c, combining their side effects in
sequence. Let us define a variant composition operator to do so. We choose to
define “reverse composition”, which takes its arguments in the opposite order to
(.), so that the order in which we write the arrows in a composition corresponds
to the order in which their side effects occur.

(>>>) :: Monad m =>
Kleisli m a b -> Kleisli m b c -> Kleisli m a c

(f >>> g) a = do b <- f a
g b

We can use this composition operator to define functions with side-effects in a
point-free style — for example, the following function to print the contents of a
file:

printFile = readFile >>> print

Returning to our original example, we cannot yet reprogram it in terms of (>>>)
because it also involves functions without side-effects, and these have the wrong
type to be composed by (>>>). Fortunately, we can easily convert a pure function
of type a -> b into a Kleisli arrow with no side-effects. We define a combinator
to do so, and we call it arr.

arr :: Monad m => (a->b) -> Kleisli m a b
arr f = return . f

Using this combinator, we can now combine side-effecting and pure functions in
the same point-free definition, and solve our original problem in the following
rather clear way:

count w = readFile >>>
arr words >>> arr (filter (==w)) >>> arr length >>>
print

Programming with Arrows 75

1.2 The Arrow Class

Now we have two ways to write point-free definitions: using functions and com-
position, or Kleisli arrows and arrow composition. We can unify them by over-
loading the arrow operators, so that the same operations can be used with both.
To do so, we introduce an Arrow class with arr and (>>>) as methods:

class Arrow arr where
arr :: (a -> b) -> arr a b
(>>>) :: arr a b -> arr b c -> arr a c

It is trivial to define an instance for the function type:

instance Arrow (->) where
arr = id
(>>>) = flip (.)

But in order to make Kleisli arrows an instance, we have to make Kleisli a
new type rather than a type synonym:

newtype Kleisli m a b = Kleisli {runKleisli :: a -> m b}

We can now declare

instance Monad m => Arrow (Kleisli m) where ...

where the method definitions are those we have already seen, modified to add
and remove the Kleisli constructor appropriately.

The extra constructor clutters our definitions a little. We must now redefine
count as

count w = Kleisli readFile >>>
arr words >>> arr (filter (==w)) >>> arr length >>>
Kleisli print

and invoke it via

runKleisli (count w) filename

rather than simply count w filename, but this is a small price to pay for a
uniform notation. Indeed, Jansson and Jeuring used arrows in the derivation of
matched parsers and prettyprinters purely for the notational benefits in equa-
tional proofs [11]. This notation is available in any Haskell program just by im-
porting the hierarchical library Control.Arrow, which defines Arrow, Kleisli,
and a number of other useful classes.

Now that we have defined an Arrow class, it’s natural to ask if we can find
other interesting instances — and indeed we can. Here, for example, is the arrow
of stream functions:

newtype SF a b = SF {runSF :: [a] -> [b]}

76 J. Hughes

The arrow operations are defined as follows:

instance Arrow SF where
arr f = SF (map f)
SF f >>> SF g = SF (f >>> g)

and might be used like this:

StreamFns> runSF (arr (+1)) [1..5]
[2,3,4,5,6]

Just like monads, arrow types are useful for the additional operations they sup-
port, over and above those that every arrow provides. In the case of stream func-
tions, one very useful operation is to delay the stream by one element, adding a
new element at the beginning of the stream:

delay x = SF (x:)

The delay arrow might be used like this:

StreamFns> runSF (delay 0) [1..5]
[0,1,2,3,4,5]

It will appear many times in examples below.
Most applications of arrows do not, in fact, use the function or Kleisli arrows

— they use other instances of the Arrow class, which enables us to program
in the same, point-free way with other kinds of objects. In real applications an
arrow often represents some kind of a process, with an input channel of type a,
and an output channel of type b. The stream functions example above is perhaps
the simplest case of this sort, and will be developed in some detail.

1.3 Arrows as Computations

We are used to thinking of monads as modelling computations, but monads are
used in two distinct ways in Haskell. On the one hand, the IO and ST monads
provide a referentially transparent interface to imperative operations at a lower
level. On the other hand, monads used in libraries of parsing combinators, for
example, help to structure purely functional code, with not an imperative oper-
ation in sight. In this second kind of example, the Monad class is used as a shared
interface that many different combinator libraries can provide.

Why bother to share the same interface between many combinator libraries?
There are several important reasons:

– We know from experience that the Monad interface is a good one. The library
designer who chooses to use it knows that it will provide users with a powerful
tool.

– The library designer can exploit tools for implementing the interface system-
atically — monad transformers nowadays make it easy to construct complex
implementations of class Monad [13], thus reducing the library author’s work.

Programming with Arrows 77

– We can write overloaded code that works with many different libraries —
the functions in the standard Monad library are good examples. Such code
provides free functionality that the library author need neither design nor
implement.

– When a shared interface is sufficiently widely used, it can even be worthwhile
to add specific language support for using it. Haskell’s do syntax does just
this for monads.

– Library users need learn less to use a new library, if a part of its interface is
already familiar.

These are compelling advantages — and yet, the monadic interface suffers a
rather severe restriction. While a monadic program can produce its output in
many different ways — perhaps not at all (the Maybe monad), perhaps many
times (the list monad), perhaps by passing it to a continuation — it takes its
input in just one way: via the parameters of a function.

We can think of arrows as computations, too. The Arrow class we have de-
fined is clearly analogous to the usual Monad class — we have a way of creating a
pure computation without effects (arr/return), and a way of sequencing com-
putations ((>>>)/(>>=)). But whereas monadic computations are parameterised
over the type of their output, but not their input, arrow computations are pa-
rameterised over both. The way monadic programs take input cannot be varied
by varying the monad, but arrow programs, in contrast, can take their input in
many different ways depending on the particular arrow used. The stream func-
tion example above illustrates an arrow which takes its input in a different way,
as a stream of values rather than a single value, so this is an example of a kind
of computation which cannot be represented as a monad.

Arrows thus offer a competing way to represent computations in Haskell.
But their purpose is not to replace monads, it is to bring the benefits of a
shared interface, discussed above, to a wider class of computations than monads
can accomodate. And in practice, this often means computations that represent
processes.

1.4 Arrow Laws

One aspect of monads we have not touched on so far, is that they satisfy the
so-called monad laws [26]. These laws play a rather unobtrusive rôle in practice
— since they do not appear explicitly in the code, many programmers hardly
think about them, much less prove that they hold for the monads they define.
Yet they are important: it is the monad laws that allow us to write a sequence
of operations in a do block, without worrying about how the sequence will
be bracketed when it is translated into binary applications of the monadic bind
operator. Compare with the associative law for addition, which is virtually never
explicitly used in a proof, yet underlies our notation every time we write a+b+c
without asking ourselves what it means.

Arrows satisfy similar laws, and indeed, we have already implicitly assumed
the associativity of (>>>), by writing arrow compositions without brackets!

78 J. Hughes

Other laws tell us, for example, that arr distributes over (>>>), and so the
definition of count we saw above,

count w = Kleisli readFile >>>
arr words >>> arr (filter (==w)) >>> arr length >>>
Kleisli print

is equivalent to

count w = Kleisli readFile >>>
arr (words >>> filter (==w) >>> length) >>>
Kleisli print

Now, it would be very surprising if this were not the case, and that illustrates
another purpose of such laws: they help us avoid “surprises”, where a slight
modification of a definition, that a programmer would reasonably expect to be
equivalent to the original, leads to a different behaviour. In this way laws provide
a touchstone for the implementor of an arrow or monad, helping to avoid the
creation of a design with subtle traps for the user. An example of such a design
would be a “monad” which measures the cost of a computation, by counting
the number of times bind is used. It is better to define a separate operation for
consuming a unit of resource, and let bind just combine these costs, because
then the monad laws are satisfied, and cosmetic changes to a monadic program
will not change its cost.

Nevertheless, programmers do sometimes use monads which do not satisfy
the stated laws. Wadler’s original paper [26] introduced the “strictness monad”
whose only effect is to force sequencing to be strict, but (as Wadler himself
points out), the laws are not satisfied. Another example is the random generation
“monad” used in our QuickCheck [4] testing tool, with which terms equivalent
by the monad laws may generate different random values — but with the same
distribution. There is a sense in which both these examples “morally” satisfy the
laws, so that programmers are not unpleasantly surprised by using them, but
strictly speaking the laws do not hold.

In the same way, some useful arrow instances may fail to satisfy the arrow
laws. In fact, the stream functions we are using as our main example fail to do
so, without restrictions that we shall introduce below. In this case, if we drop
the restrictions then we may well get unpleasant surprises when we use stream
function operations later.

Despite the importance of the arrow laws, in these notes I have chosen to
de-emphasize them. The reason is simple: while monads can be characterised by
a set of three laws, the original arrows paper states twenty [10], and Paterson’s
tutorial adds at least seven more [18]. It is simply harder to characterise the
expected behaviour of arrows equationally. I have therefore chosen to focus on
understanding, using, and implementing the arrow interface, leaving a study of
the laws for further reading. Either of the papers cited in this paragraph is a
good source.

Programming with Arrows 79

2 The Arrow Classes

As we already noted, the monadic interface is a powerful one, which enables
programmers to build a rich library of operations which work with any monad.
There is an important difference between the monadic interface, and the Arrow
class that we have seen so far, that has a major impact on how arrows can
be implemented and used. Compare the types of the sequencing operators for
monads and arrows:

class Monad m where
(>>=) :: m b -> (b -> m c) -> m c
...

class Arrow arr where
(>>>) :: arr a b -> arr b c -> arr a c
...

In the case of monads, the second argument of (>>=) is a Haskell function, which
permits the user of this interface to use all of Haskell to map the result of the first
computation to the computation to be performed next. Every time we sequence
two monadic computations, we have an opportunity to run arbitrary Haskell code
in between them. But in the case of arrows, in contrast, the second argument of
(>>>) is just an arrow, an element of an abstract datatype, and the only things
we can do in that arrow are things that the abstract data type interface provides.
Certainly, the arr combinator enables us to have the output of the first arrow
passed to a Haskell function — but this function is a pure function, with the
type b -> c, which thus has no opportunity to perform further effects. If we
want the effects of the second arrow to depend on the output of the first, then
we must construct it using operations other than arr and (>>>).

Thus the simple Arrow class that we have already seen is not sufficiently
powerful to allow much in the way of useful overloaded code to be written.
Indeed, we will need to add a plethora of other operations to the arrow interface,
divided into a number of different classes, because not all useful arrow types can
support all of them. Implementing all of these operations makes defining a new
arrow type considerably more laborious than defining a new monad — but there
is another side to this coin, as we shall see later. In the remainder of this section,
we will gradually extend the arrow interface until it is as powerful as the monadic
one.

2.1 Arrows and Pairs

Suppose we want to sequence two computations delivering integers, and add
their results together. This is simple enough to do with a monad:

addM a b = do x <- a
y <- b
return (x+y)

80 J. Hughes

But the arrow interface we have seen so far is not even powerful enough to do
this!

Suppose we are given two arrows f and g, which output integers from the
same input. If we could make a pair of their outputs, then we could supply that
to arr (uncurry (+)) to sum the components, and define

addA :: Arrow arr => arr a Int -> arr a Int -> arr a Int
addA f g = f_and_g >>> arr (uncurry (+))

But clearly, there is no way to define f_and_g just in terms of f, g, (>>>)
and arr. Any composition of the form ... >>> f >>> ... loses all information
other than f’s output after the appearance of f, and so neither g’s output nor
the input needed to compute it can be available afterwards.

We therefore add an operator to construct f_and_g to the arrow interface:

class Arrow arr where
...
(&&&) :: arr a b -> arr a c -> arr a (b,c)

which enables us to define addA by

addA f g = f &&& g >>> arr (uncurry (+))

(The composition operator binds less tightly than the other arrow operators).
The new operator is simple to implement for functions and Kleisli arrows:

instance Arrow (->) where
...
(f &&& g) a = (f a, g a)

instance Monad m => Arrow (Kleisli m) where
...
Kleisli f &&& Kleisli g = Kleisli $ \a -> do b <- f a

c <- g a
return (b,c)

For stream functions, we just zip the output streams of f and g together. We can
conveniently use the arrow operators on functions to give a concise point-free
definition!

instance Arrow SF where
...
SF f &&& SF g = SF (f &&& g >>> uncurry zip)

As an example, here is a stream function which maps a stream to a stream of
pairs, by pairing together each input value and its predecessor:

pairPred = arr id &&& delay 0

Programming with Arrows 81

Running pairPred on an example gives

StreamFns> runSF (arr id &&& delay 0) [1..5]
[(1,0),(2,1),(3,2),(4,3),(5,4)]

The (&&&) operator is convenient to use, but it is not the simplest way to add this
functionality to the arrow interface. Arrow types can be complex to implement,
and as we observed above, there are many operations that need to be defined. To
make implementing arrows as lightweight as possible, it is important to dissect
each combinator into parts which are the same for each arrow type, and so can
be implemented once and for all, and the minimal functionality that must be
reimplemented for each new Arrow instance. In this case, the (&&&) operator,
among other things, duplicates the input so it can be fed to both arguments.
Duplication can be performed using arr (\x->(x,x)), so we factor this out and
define (&&&) in terms of a simpler operator (***):

f &&& g = arr (\x->(x,x)) >>> f *** g

The new operator in turn is added to the Arrow class:

class Arrow arr where
...
(***) :: arr a b -> arr c d -> arr (a,c) (b,d)

The combination f *** g constructs an arrow from pairs to pairs, that passes
the first components through f, and the second components through g.

Now, (***) turns out not to be the simplest way to provide this functionality
either. It combines two arrows into an arrow on pairs, but we can obtain the same
functionality using a combinator that just lifts one arrow to an arrow on pairs.
We therefore introduce the combinator first, which lifts an arrow to operate on
pairs by feeding just the first components through the given arrow, and leaving
the second components untouched. Its type is

class Arrow arr where
...
first :: arr a b -> arr (a,c) (b,c)

Its implementations for functions, Kleisli arrows, and stream functions are:

instance Arrow (->) where
...
first f (a,c) = (f a,c)

instance Monad m => Arrow (Kleisli m) where
...
first (Kleisli f) = Kleisli (\(a,c) -> do b <- f a

return (b,c))

instance Arrow SF where
first (SF f) = SF (unzip >>> first f >>> uncurry zip)

82 J. Hughes

If we had taken (***) as primitive, then we could have defined first by

first f = f *** arr id

But we can instead define (***) in terms of first, by first defining

second :: Arrow arr => arr a b -> arr (c,a) (c,b)
second f = arr swap >>> first f >>> arr swap
where swap (x,y) = (y,x)

which lifts an arrow to work on the second components of pairs, and then defining

f *** g = first f >>> second g

This definition also has the advantage that it clarifies that the effects of f come
before the effects of g, something that up to this point has been unspecified.

The Arrow class defined in Control.Arrow includes all of these combinators
as methods, with the definitions given here as defaults. That permits an imple-
mentor to declare an instance of this just be defining arr, (>>>) and first.
It also permits implementors to give specialised definitions of all the arrow op-
erations, which in general will be more efficient. In that case, the specialised
definitions should, of course, respect the semantics of those given here. An im-
plementation of first is often only half the size of a corresponding implemen-
tation of (***) or (&&&), and so, at least in the earlier stages of development,
the simplification made here is well worth while.

2.2 Arrows and Conditionals

The combinators in the previous section allow us to combine the results from
several arrows. But suppose we want to make a choice between two arrows, on the
basis of a previous result? With the combinators we have seen so far, every arrow
in a combination is always “invoked” — we cannot make any arrow conditional
on the output of another. We will need to introduce further combinators to make
this possible.

At first sight, one might expect to introduce a combinator modelling an “if-
then-else” construct, perhaps

ifte :: Arrow arr => arr a Bool -> arr a b -> arr a b -> arr a b

where ifte p f g uses p to compute a boolean, and then chooses between f
and g on the basis of its output. But once again, we can simplify this combinator
considerably.

First of all, we can easily factor out p by computing its result before the
choice: we can do so with p &&& arr id, which outputs a pair of the boolean
and the original input. We would then define ifte by

ifte p f g = p &&& arr id >>> f ||| g

where f ||| g chooses between f and g on the basis of the first component of
the pair in its input, passing the second component on to f or g. But we can

Programming with Arrows 83

do better than this: note that the input type of f ||| g here, (Bool,a), carries
the same information as Either a a, where (True,a) corresponds to Left a,
and (False,a) to Right a. If we use an Either type as the input to the choice
operator, rather than a pair, then the Left and Right values can carry different
types of data, which is usefully more general. We therefore define

class Arrow arr => ArrowChoice arr where
(|||) :: arr a c -> arr b c -> arr (Either a b) c

Note the duality between (|||) and (&&&) — if we reverse the order of the
parameters of arr in the type above, and replace Either a b by the pair type
(a,b), then we obtain the type of (&&&)! This duality between choice and pairs
recurs throughout this section. As we will see later, not all useful arrow types
can support the choice operator; we therefore place it in a new subclass of Arrow,
so that we can distinguish between arrows with and without a choice operator.

As an example of using conditionals, let us see how to define a map function
for arrows:

mapA :: ArrowChoice arr => arr a b -> arr [a] [b]

The definition of mapA requires choice, because we must choose between the base
and recursive cases on the basis of the input list. We shall express mapA as base-
case ||| recursive-case, but first we must convert the input into an Either type.
We do so using

listcase [] = Left ()
listcase (x:xs) = Right (x,xs)

and define mapA by

mapA f = arr listcase >>>
arr (const []) ||| (f *** mapA f >>> arr (uncurry (:)))

where we choose between immediately returning [], and processing the head
and tail, then consing them together. We will see examples of using mapA once
we have shown how to implement (|||).

Notice first that f ||| g requires that f and g have the same output type,
which is a little restrictive. Another possibility is to allow for different output
types, and combine them into an Either type by tagging f’s output with Left,
and g’s output with Right. We call the operator that does this (+++):

class Arrow arr => ArrowChoice arr where
...
(+++) :: arr a b -> arr c d -> arr (Either a c) (Either b d)

Now observe that (+++) is to (|||) as (***) is to (&&&): in other words, we
can easily define the latter in terms of the former, and the former is (marginally)
simpler to implement. Moreover, it is dual to (***) — just replace Either types
by pairs again, and swap the parameters of arr. In this case the definition of
(|||) becomes

84 J. Hughes

f ||| g = f +++ g >>> arr join
where join (Left b) = b

join (Right b) = b

Now, just as (***) combined two arrows into an arrow on pairs, and could be
defined in terms of a simpler combinator which lifted one arrow to the first
components of pairs, so (+++) can be defined in terms of a simpler operator
which just lifts an arrow to the left summand of an Either type. Therefore we
introduce

class Arrow arr => ArrowChoice arr where
...
left :: arr a b -> arr (Either a c) (Either b c)

The idea is that left f passes inputs tagged Left to f, passes inputs tagged
Right straight through, and tags outputs from f with Left. Given left, we can
then define an analogous combinator

right f = arr mirror >>> left f >>> arr mirror
where mirror (Left a) = Right a

mirror (Right a) = Left a

and combine them to give a definition of (+++) in terms of simpler combinators:

f +++ g = left f >>> right g

Just as in the previous section, the definition of the ArrowChoice class in
Control.Arrow includes all of these combinators (except ifte), with the def-
initions given here as defaults. Thus one can make an arrow an instance of
ArrowChoice just by implementing left, or alternatively give specialised defi-
nitions of all the combinators for greater efficiency.

Choice is easy to implement for functions and Kleisli arrows:

instance ArrowChoice (->) where
left f (Left a) = Left (f a)
left f (Right b) = Right b

instance Monad m => ArrowChoice (Kleisli m) where
left (Kleisli f) = Kleisli (\x ->
case x of

Left a -> do b <- f a
return (Left b)

Right b -> return (Right b))

Programming with Arrows 85

With these definitions, mapA behaves like map for functions, and mapM for
Kleisli arrows1:

StreamFns> mapA (arr (+1)) [1..5]
[2,3,4,5,6]
StreamFns> runKleisli (mapA (Kleisli print) >>> Kleisli print)

[1..5]
1
2
3
4
5
[(),(),(),(),()]

But what about stream functions?
Implementing left for stream functions is a little trickier. First of all, it is

clear that the input xs is a list of tagged values, from which all those tagged with
Left should be extracted and passed to the argument stream function, whose
outputs should be retagged with Left:

map Left (f [a | Left a <- xs])

Moreover, all the elements of xs tagged Right should be copied to the out-
put. But how should the Left and Right values be merged into the final output
stream?

There is no single “right answer” to this question. We shall choose to restrict
our attention to synchronous stream functions, which produce exactly one output
per input2. With this assumption, we can implement left by including one
element of f’s output in the combined output stream every time an element
tagged Left appears in the input. Thus:

instance ArrowChoice SF where
left (SF f) = SF (\xs -> combine xs (f [y | Left y <- xs]))
where combine (Left y:xs) (z:zs) = Left z: combine xs zs

combine (Right y:xs) zs = Right y: combine xs zs
combine [] zs = []

In fact, the restriction we have just made, to length-preserving stream functions,
turns out to be necessary not only to define left, but also to ensure the good
behaviour of first. The definition of first we gave in the previous section does
not in general satisfy the “arrow laws” formulated in [10], which means that it
occasionally behaves in surprising ways — but the laws are satisfied under the
restriction to length-preserving functions.

1 Here the second expression to be evaluated is split across several lines for readability,
which is of course not allowed by Hugs or GHCi.

2 The delay arrow is clearly problematic, but don’t worry! We shall see how to fix
this shortly.

86 J. Hughes

The only stream function arrow we have seen so far which does not preserve
the length of its argument is delay — the delayed stream has one more element
than the input stream. Recall the definition we saw earlier:

delay x = SF (x:)

In order to meet our new restriction, we redefine delay as

delay x = SF (init . (x:))

This does not change the behaviour of the examples we saw above.
As an example of using choice for stream functions, let us explore how mapA

behaves for this arrow type. It is interesting to map the delay arrow over a
stream of lists:

StreamFns> runSF (mapA (delay 0)) [[1,2,3],[4,5,6],[7,8,9]]
[[0,0,0],[1,2,3],[4,5,6]]

Even more interesting is a stream of lists of different lengths:

StreamFns> runSF (mapA (delay 0))
[[1,2,3],[4,5],[6],[7,8],[9,10,11],[12,13,14,15]]

[[0,0,0],[1,2],[4],[6,5],[7,8,3],[9,10,11,0]]

If we arrange the input and output streams as tables,

1 2 3
4 5
6
7 8
9 10 11
12 13 14 15

0 0 0
1 2
4
6 5
7 8 3
9 10 11 0

then we can see that the shape of the table output correponds to the shape of
the input, but the elements in each column form a stream delayed by one step,
where the gaps in the columns are ignored.

As another example, consider the following arrow which delays a list by
passing the head straight through, and recursively delaying the tail by one more
step.

delaysA = arr listcase >>>
arr (const []) |||
(arr id *** (delaysA >>> delay []) >>>
arr (uncurry (:)))

Running this on an example gives

StreamFns> runSF delaysA [[1,2,3],[4,5,6],[7,8,9],[10,11,12]]
[[1],[4,2],[7,5,3],[10,8,6]]

Programming with Arrows 87

or, laid out as tables,

1 2 3
4 5 6
7 8 9
10 11 12

1
4 2
7 5 3
10 8 6

We can see that each column is delayed by a different amount, with missing
entries represented by the empty list.

2.3 Arrows and Feedback

Stream functions are useful for simulating synchronous circuits. For example, we
could represent a NOR-gate by the arrow

nor :: SF (Bool,Bool) Bool
nor = arr (not.uncurry (||))

and simulate it by using runSF to apply it to a list of pairs of booleans. In this
section we shall visualise such lists by drawing signals as they might appear on
an oscilloscope, so a test of nor might produce this output:

________| |_______

_ _ _ _ _ _
| |_| |_| |_| |_| |_| |_

_ _ _ _
__| |_| |_________| |_|

Here the top two signals are the input, and the bottom one the output. As we
would expect, the output is high only when both inputs are low. (The ASCII
graphics are ugly, but easily produced by portable Haskell code: a function which
does so is included in the appendix).

Synchronous circuits contain delays, which we can simulate with the delay
arrow. For example, a rising edge detector can be modelled by comparing the
input with the same signal delayed one step.

edge :: SF Bool Bool
edge = arr id &&& delay False >>> arr detect
where detect (a,b) = a && not b

Testing this arrow might produce

_______ _______
________| |_______|

_ _
________| |_____________| |_____

where a pulse appears in the output at each rising edge of the input.

88 J. Hughes

Now, by connecting two NOR-gates together, one can build a flip-flop (see
Figure 1). A flip-flop takes two inputs, SET and RESET, and produces two
outputs, one of which is the negation of the other. As long as both inputs remain
low, the outputs remain stable, but when the SET input goes high, then the first
output does also, and when the RESET input goes high, then the first output
goes low. If SET and RESET are high simultaneously, then the flip-flop becomes
unstable. A flip-flop is made by connecting the output of each NOR-gate to one
input of the other; the remaining two inputs of the NOR-gates are the inputs of
the flip-flop, and their outputs are the outputs of the flip-flop.

RESET
OR

ORSET

Fig. 1. A flip-flop built from two NOR-gates

To represent the flip-flop as an arrow, we need to feed back the outputs of
the NOR-gates to their inputs. To make this possible, we introduce a new arrow
class with a feedback combinator:

class Arrow arr => ArrowLoop arr where
loop :: arr (a,c) (b,c) -> arr a b

The intention is that the component of type c in the output of the argument
arrow is fed back to become the second component of its input. For example, for
ordinary functions loop just creates a simple recursive definition:

instance ArrowLoop (->) where
loop f a = b
where (b,c) = f (a,c)

Feedback can also be implemented for Kleisli arrows over monads which are
instances of the MonadFix class, but we omit the details here. Instead, let us
implement feedback for stream functions. We might expect to use the following
definition:

instance ArrowLoop SF where
loop (SF f) = SF $ \as ->

let (bs,cs) = unzip (f (zip as cs)) in bs

Programming with Arrows 89

which closely resembles the definition for functions, making a recursive definition
of the feedback stream cs. However, this is just a little too strict. We would of
course expect loop (arr id) to behave as arr id (with an undefined feedback
stream), and the same is true of loop (arr swap), which feeds its input through
the feedback stream to its output. But with the definition above, both these loops
are undefined. The problem is the recursive definition of (bs,cs) above: the
functions unzip and zip are both strict — they must evaluate their arguments
before they can return a result — and so are arr id and arr swap, the two
functions we are considering passing as the parameter f, with the result that the
value to be bound to the pattern (bs,cs) cannot be computed until the value
of cs is known! Another way to see this is to remember that the semantics of
a recursive definition is the limit of a sequence of approximations starting with
the undefined value, ⊥, and with each subsequent approximation constructed by
evaluating the right hand side of the definition, with the left hand side bound to
the previous one. In this case, when we initially bind (bs,cs) to ⊥ then both
bs and cs are bound to ⊥, but now because zip is strict then zip as ⊥=⊥,
because f is strict then f ⊥=⊥, and because unzip is strict then unzip ⊥=⊥.
So the second approximation, unzip (f (zip as ⊥)), is also ⊥, and by the
same argument so are all of the others. Thus the limit of the approximations is
undefined, and the definition creates a “black hole”.

To avoid this, we must ensure that cs is not undefined, although it may be
a stream of undefined elements. We modify the definition as follows:

instance ArrowLoop SF where
loop (SF f) = SF $ \as ->

let (bs,cs) = unzip (f (zip as (stream cs))) in bs
where stream ~(x:xs) = x:stream xs

The ~ in the definition of stream indicates Haskell’s lazy pattern matching — it
delays matching the argument of stream against the pattern (x:xs) until the
bound variables x and xs are actually used. Thus stream returns an infinite list
without evaluating its argument — it is only when the elements of the result
are needed that the argument is evaluated. Semantically, stream ⊥=⊥:⊥:⊥:
. . .. As a result, provided as is defined, then so is zip as (stream ⊥) —
it is a list of pairs with undefined second components. Since neither f nor
unzip needs these components to deliver a defined result, we now obtain de-
fined values for bs and cs in the second approximation, and indeed the limit
of the approximations is the result we expect. The reader who finds this ar-
gument difficult should work out the sequence of approximations in the call
runSF (loop (arr swap)) [1,2,3] — it is quite instructive to do so.

Note that stream itself is not a length-preserving stream function: its result is
always infinite, no matter what its argument is. But loop respects our restriction
to synchronous stream functions, because zip always returns a list as long as
its shorter argument, which in this case is as, so the lists bound to bs and cs
always have the same length as as.

Returning to the flip-flop, we must pair two NOR-gates, take their out-
puts and duplicate them, feeding back one copy, and supplying each NOR-gate

90 J. Hughes

with one input and the output of the other NOR-gate as inputs. Here is a first
attempt:

flipflop =
loop (arr (\((reset,set),(c,d)) -> ((set,d),(reset,c))) >>>

nor *** nor >>>
arr id &&& arr id)

The first line takes the external inputs and fed-back outputs and constructs the
inputs for each NOR-gate. The second line invokes the two NOR-gates, and the
third line duplicates their outputs.

Unfortunately, this definition is circular: the ith output depends on itself. To
make a working model of a flip-flop, we must add a delay. We do so as follows:

flipflop =
loop (arr (\((reset,set),~(c,d)) -> ((set,d),(reset,c))) >>>

nor *** nor >>>
delay (False,True) >>>
arr id &&& arr id)

which initialises the flip-flop with the first output low. We must also ensure that
the loop body is not strict in the loop state, which explains the lazy pattern
matching on the first line. Note that the delay in the code delays a pair of bits,
and so corresponds to two single-bit delays in the hardware, and the feedback
path in this example passes through both of them (refer to Figure 1). This makes
the behaviour a little less responsive, and we must now trigger the flip-flop with
pulses lasting at least two cycles. For example, one test of the flip-flop produces
this output:

___ ___
________________________| |_________| |___________

___ ___
__________| |_______________________| |___________

___________ _ _ _
______________| |_________________| |_| |_|

___________ ___________ _ _ _
| |_______________| |___| |_| |_|

Here the first two traces are the RESET and SET inputs, and the bottom two
are the outputs from the flip-flop. Initially the first output is low, but when the
SET input goes high then so does the output. It goes low again when the RESET
input goes high, then when both inputs go high, the flip-flop becomes unstable.

The ArrowLoop class, together with instances for functions and Kleisli arrows,
is included in Control.Arrow. Ross Paterson has also suggested overloading

Programming with Arrows 91

delay, and placing it in an ArrowCircuit class, but this has not (yet) found its
way into the standard hierarchical libraries.

2.4 Higher-Order Arrows

What about higher-order programming with arrows? Can we construct arrows
which receive other arrows in their input, and invoke them? We cannot, using
the combinators we have already seen, but we can, of course, add a new class to
make this possible. We introduce an arrow analogue of the “apply” function:

class Arrow arr => ArrowApply arr where
app :: arr (arr a b, a) b

Instances for functions and Kleisli arrows are easy to define:

instance ArrowApply (->) where
app (f,x) = f x

instance Monad m => ArrowApply (Kleisli m) where
app = Kleisli (\(Kleisli f,x) -> f x)

but there is no reasonable implementation for stream functions. We shall see
why shortly.

First of all, note that both first and left are easy to implement in terms
of app (the details are left as an exercise). So app is a strictly more powerful
operator to provide. We have also seen that we can base a Kleisli arrow on any
monad, and we can implement all of first, left and app for such a type. In
fact, app is so powerful that we can reconstruct a monad from any arrow type
which supports it! We represent a computation of an a as an arrow from the
empty tuple to a:

newtype ArrowMonad arr a = ArrowMonad (arr () a)

We can now define return and (>>=) as follows:

instance ArrowApply a => Monad (ArrowMonad a) where
return x = ArrowMonad (arr (const x))
ArrowMonad m >>= f =
ArrowMonad (m >>>

arr (\x-> let ArrowMonad h = f x in (h, ())) >>>
app)

The second argument of (>>=) is a function returning an arrow, which we turn
into an arrow outputting an arrow (h) using arr; we then need app to invoke
the result.

Thus we have finally fulfilled our promise at the beginning of this section, to
extend the arrow interface until it is as powerful as — indeed, equivalent to —
the monadic one. We can now do everything with arrows that can be done with
monads — if need be, by converting our arrow type into a monad. Yet this is

92 J. Hughes

only a Pyrrhic victory. If we want to do “monadic” things, it is much simpler to
define a monad directly, than to first define all the arrow operations, and then
build a monad on top of them.

The conclusion we draw is that arrows that support app are of relatively
little interest! Apart from the benefits of point-free notation, we might as well
use a monad instead. The truly interesting arrow types are those which do not
correspond to a monad, because it is here that arrows give us real extra gener-
ality. Since we know that stream functions cannot be represented as a monad,
then they are one of these “interesting” arrow types. So are the arrows used for
functional reactive programming, for building GUIs, and the arrows for discrete
event simulation we present in Section 5. And since these arrows cannot be rep-
resented by a monad, we know that they cannot support a sensible definition of
app either.

2.5 Exercises

1. Filtering. Define

filterA :: ArrowChoice arr => arr a Bool -> arr [a] [a]

to behave as filter on functions, and like filterM on Kleisli arrows.
Experiment with running

filterA (arr even >>> delay True)

on streams of lists of varying lengths, and understand its behaviour.
2. Stream processors. Another way to represent stream processors is using

the datatype

data SP a b = Put b (SP a b) | Get (a -> SP a b)

where Put b f represents a stream processor that is ready to output b and
continue with f, and Get k represents a stream processor waiting for an
input a, which will continue by passing it to k. Stream processors can be
interpreted as stream functions by the function

runSP (Put b s) as = b:runSP s as
runSP (Get k) (a:as) = runSP (k a) as
runSP (Get k) [] = []

Construct instances of the classes Arrow, ArrowChoice, ArrowLoop, and
ArrowCircuit for the type SP.
– You are provided with the module Circuits, which defines the class

ArrowCircuit.
– You should find that you can drop the restriction we imposed on stream

functions, that one output is produced per input — so SP arrows can
represent asynchronous processes.

– On the other hand, you will encounter a tricky point in defining first.
How will you resolve it?

Programming with Arrows 93

– Check that your implementation of loop has the property that the arrows

loop (arr id) and loop (arr swap) behave as arr id:
SP> runSP (loop (arr id)) [1..10]
[1,2,3,4,5,6,7,8,9,10]
SP> runSP (loop (arr swap)) [1..10]
[1,2,3,4,5,6,7,8,9,10]

Module Circuits also exports the definition flipflop above, together
with sample input flipflopInput and a function showSignal which
visualises tuples of lists of booleans as the “oscilloscope traces” we saw
above.

SP> putStr$ showSignal$ flipflopInput
___ ___

________________________| |_________| |___________

___ ___
__________| |_______________________| |___________

Use these functions to test a flipflop using your stream processors as the
underlying arrow type. The behaviour should be the same as we saw
above.

3 Pointed Arrow Programming

We began these notes by arguing the merits of a point-free programming style.
Yet although point-free programming is often concise and readable, it is not
always appropriate. In many cases it is clearer to give names to the values being
manipulated, and in ordinary Haskell programs we do not hesitate to do so. This
“pointed” style is also well-supported in monadic programs, by the do notation.
But what if we want to use a pointed style in an arrow-based program? With
the combinators we have seen so far, it is quite impossible to do so.

In fact, an extension to the language is needed to make pointed arrow pro-
gramming possible. Ross Paterson designed such an extension [17], and imple-
mented it using a preprocessor, and it was built into GHC in version 6.2. Pa-
terson’s extension is comparable to the do notation for monads — it is quite
possible to program without it, but some programs are much nicer with it. But
just as arrows have a more complex interface than do monads, so Paterson’s no-
tation is more complex than the do, and its translation much more complicated.
The complexity of the translation, of course, makes the notation all the more
valuable. In this section we will explain how to use this extension.

3.1 Arrow Abstractions

Paterson’s extension adds a new form of expression to Haskell: the arrow ab-
straction, of the form proc pat -> body. Arrow abstractions are analogous to

94 J. Hughes

λ-expressions: they denote an arrow, and bind a name (or, in general, a pattern)
to the arrow input, which may then be used in the body of the abstraction.

However, the body of an arrow abstraction is not an expression: it is of a
new syntactic category called a command. Commands are designed to help us
construct just those arrows that can be built using the arrow combinators —
but in a sometimes more convenient notation.

The simplest form of command, f -< exp, can be thought of as a form of
“arrow application” — it feeds the value of the expression exp to the arrow f.
(The choice of notation will make more sense shortly). Thus, for example, an
AND-gate with a delay of one step could be expressed by

proc (x,y) -> delay False -< x && y

This is equivalent to arr (\(x,y) -> x&&y) >>> delay False. Arrow abstrac-
tions with a simple command as their body are translated as follows,

proc pat -> a -< e −→ arr (\pat -> e) >>> a

and as this translation suggests, arrow-bound variables (such as x and y in the
AND-gate example above) are not in scope to the left of the -<. This is an
easy way to see that proc could not possibly be implemented by a combinator
taking a λ-expression as an argument: the scopes of arrow-bound variables do
not correspond to the scopes of λ-bound variables.

This scope rule rules out arrow abstractions such as

proc (f,x) -> f -< x

which is rejected, because it translates to arr (\(f,x)->x) >>> f, in which f
is used outside its scope. As usual, if we want to apply an arrow received as
input, we must use app:

proc (f,x) -> app -< (f,x)

The arrow notation does offer syntactic sugar for this as well:

proc (f,x) -> f -<< x

However, this is of little importance, since there is little reason to use arrows
with app — one might as well use the equivalent monad instead.

Pointed arrow notation really comes into its own when we start to form
compound commands from simpler ones. For example, suppose we want to feed
inputs to either the arrow f or g, depending on the value of a predicate p. Using
the arrow combinators, we would need to encode the choice using Left and
Right, in order to use the choice combinator (|||):

arr (\x -> if p x then Left x else Right x) >>> f ||| g

Using the pointed arrow notation, we can simply write

proc x -> if p x then f -< x else g -< x

Programming with Arrows 95

Here the if...then...else... is a conditional command, which is translated
as follows:

proc pat -> if e then c1 else c2
−→
arr (\pat -> if e then Left pat else Right pat) >>>
(proc pat -> c1 ||| proc pat -> c2)}

Note that the scope of x in the example now has two holes: the arrow-valued
expressions before each arrow application.

Even in the simple example above, the pointed notation is more concise than
the point-free. When we extend this idea to case commands, its advantage is
even greater. Recall the definition of mapA from section 2.2:

mapA f = arr listcase >>>
arr (const []) ||| (f *** mapA f >>> arr (uncurry (:)))

where listcase [] = Left ()
listcase (x:xs) = Right (x,xs)

We were obliged to introduce an encoding function listcase to convert the
case analysis into a choice between Left and Right. Clearly, a case analysis
with more cases would require an encoding into nested Either types, which
would be tedious in the extreme to program. But all these encodings are gener-
ated automatically from case-commands in the pointed arrow notation. We can
reexpress mapA as

mapA f = proc xs ->
case xs of
[] -> returnA -< []
x:xs’ -> (f *** mapA f >>> uncurry (:)) -< (x,xs’)

which is certainly more readable.
Just as in the monadic notation, we need a way to express just delivering

a result without any effects: this is the rôle of returnA -< [] above, which
corresponds to arr (const []) in the point-free code. In fact, returnA is just
an arrow, but a trivial arrow with no effects: it is defined to be arr id. We
could have written this case branch as arr (const []) -< xs, which would
correspond exactly to the point-free code, but it is clearer to introduce returnA
instead.

3.2 Naming Intermediate Values

Just as in monadic programs, it is convenient to be able to name intermediate
values in arrow programs. This is the primary function of Haskell’s do notation
for monads, and it is provided for arrows by a similar do notation. However,
while a monadic do block is an expression, an arrow do block is a command, and
can thus only appear inside an arrow abstraction. Likewise, while the statements
x <- e in a monadic do bind a name to the result of an expression e, the arrow

96 J. Hughes

form binds a name to the output of a command. As a simple example, we can
reexpress the printFile arrow of the introduction as

printFile = proc name ->
do s <- Kleisli readFile -< name

Kleisli print -< s

in which we name the string read by readFile as s. And now at last the choice
of -< as the arrow application operator makes sense — it is the tail feathers of
an arrow! A binding of the form x <- f -< e looks suggestively as though e is
being fed through an arrow labelled with f to be bound to x!

As another example, recall the rising edge detector from section 2.3:

edge :: SF Bool Bool
edge = arr id &&& delay False >>> arr detect
where detect (a,b) = a && not b

We can give a name to the intermediate, delayed value by using a do block:

edge = proc a -> do
b <- delay False -< a
returnA -< a && not b

Notice that both a and b are in scope after the binding of b, although they are
bound at different places. Thus a binding is translated into an arrow that extends
the environment, by pairing the bound value with the environment received as
input. The translation rule is

proc pat -> do x <- c1
c2

−→ (arr id &&& proc pat -> c1) >>>
proc (pat,x) -> c2

where we see clearly which variables are in scope in each command. Applying
the rule to this example, the translation of the pointed definition of edge is

edge = (arr id &&& (arr (\a->a) >>> delay False)) >>>
(arr (\(a,b) -> a && not b) >>> returnA)

which can be simplified by the arrow laws to the point-free definition we started
with, bearing in mind that arr (\a->a) and returnA are both the identity
arrow, and thus can be dropped from compositions. In practice, GHC can and
does optimise these translations, discarding unused variables from environments,
for example. But the principle is the one illustrated here.

Note that the same variable occupies different positions in the environment in
different commands, and so different occurrences must be translated differently.
The arrow notation lets us use the same name for the same value, no matter
where it occurs, which is a major advantage.

We can use the do notation to rewrite mapA in an even more pointed form.
Recall that in the last section we redefined it as

Programming with Arrows 97

s2

Adder
Half

Adder
Half

OR

c

y

x

s1

c1

c2

Fig. 2. A full adder built from half-adders

mapA f = proc xs ->
case xs of
[] -> returnA -< []
x:xs’ -> (f *** mapA f >>> uncurry (:)) -< (x,xs’)

Here the second branch of the case is still expressed in a point-free form. Let us
use do to name the intermediate results:

mapA f = proc xs ->
case xs of
[] -> returnA -< []
x:xs’ -> do y <- f -< x

ys’ <- mapA f -< xs’
returnA -< y:ys

We are left with a definition in a style which closely resembles ordinary monadic
programming.

When used with the stream functions arrow, the pointed notation can be
used to express circuit diagrams with named signals very directly. For example,
suppose that a half-adder block is available, simulated by

halfAdd :: Arrow arr => arr (Bool,Bool) (Bool,Bool)
halfAdd = proc (x,y) -> returnA -< (x&&y, x/=y)

A full adder can be constructed from a half adder using the circuit diagram in
Figure 2. From the diagram, we can read off how each component maps input
signals to output signals, and simply write this down in a do block.

fullAdd :: Arrow arr => arr (Bool,Bool,Bool) (Bool,Bool)
fullAdd = proc (x,y,c) -> do

(c1,s1) <- halfAdd -< (x,y)
(c2,s2) <- halfAdd -< (s1,c)
returnA -< (c1||c2,s2)

The arrow code is essentially a net-list for the circuit. Without the pointed arrow
notation, we would have needed to pass c past the first half adder, and c1 past
the second, explicitly, which would have made the dataflow much less obvious.

98 J. Hughes

3.3 Recursive Arrow Bindings

Of course, this simple scheme doesn’t work if the circuit involves feedback. We
have already seen an example of such a circuit: the flipflop of section 2.3. We
repeat its circuit diagram again in Figure 3. In section 2.3 we represented this
diagram as an arrow as follows:

flipflop =
loop (arr (\((reset,set),~(c,d)) -> ((set,d),(reset,c))) >>>

nor *** nor >>>
delay (False,True) >>>
arr id &&& arr id)

The arrow do syntax provides syntactic sugar for an application of loop: a group
of bindings can be preceded by rec to make them recursive using loop. In this
example, we can define flipflop instead by

flipflop :: ArrowCircuit arr => arr (Bool,Bool) (Bool,Bool)
flipflop = proc (reset,set) -> do

rec c <- delay False -< nor reset d
d <- delay True -< nor set c

returnA -< (c,d)
where nor a b = not (a || b)

As always with stream functions, we must insert enough delays to ensure that
each stream element is well-defined (in this example, one delay would actually
suffice). In this case also, the pointed definition is more straightforward than the
point-free one. Its relationship to the circuit diagram is much more obvious.

RESET
OR

ORSET

Fig. 3. The flip-flop, again

3.4 Command Combinators

Of course, once we have introduced commands, it is natural to want to define
command combinators. But since commands are not first-class expressions, it

Programming with Arrows 99

appears at first that we cannot define combinators that take commands as ar-
guments. However, commands do denote arrows from environments to outputs,
and these are first-class values. The pointed arrow notation therefore provides a
mechanism for using arrow combinators as command combinators.

However, we cannot use just any arrow combinator as a command combina-
tor. The commands that appear in pointed arrow notation denote arrows with
types of the form arr env a, where env is the type of the environment that the
command appears in, and a is the type of its output. Now, when we apply a
command combinator, then all of the commands we pass to it naturally occur in
the same environment, which is moreover the same environment that the com-
binator itself appears in. Thus the type of a command combinator should have
the form

arr env a -> arr env b -> ... -> arr env c

That is, all the arrows passed to it as arguments should have the same input
type, which moreover should be the same input type as the arrow produced.

For example, the pairing combinator

(&&&) :: Arrow arr => arr a b -> arr a c -> arr a (b,c)

has just such a type (where a is the type of the environment), while in contrast

(|||) :: Arrow arr => arr a c -> arr b c -> arr (Either a b) c

does not. We can indeed use (&&&) as an operator on commands:

example = proc x ->
do returnA -< x

&&& do delay 0 -< x

is equivalent to returnA &&& delay 0. Running the example gives

Main> runSF example [1..5]
[(1,0),(2,1),(3,2),(4,3),(5,4)]

(One trap for the unwary is that this syntax is ambiguous: in the example above,
&&& could be misinterpreted as a part of the expression following returnA -<.
The dos in the example are there to prevent this. Because of the layout rule, it
is clear in the example above that &&& is not a part of the preceding command.)

When a command combinator is not an infix operator, then applications are
enclosed in banana brackets to distinguish them from ordinary function calls.
Thus (since (&&&) is not an infix operator), we could also write the example
above as

example = proc x -> (| (&&&) (returnA -< x) (delay 0 -< x) |)

The translation of banana brackets is just

proc pat -> (| e c1...cn |) −→ e (proc pat->c1)...(proc pat->cn)

100 J. Hughes

Lovers of higher-order programming (such as ourselves!) will of course wish to
define combinators which not only accept and return commands, but parame-
terised commands, or “functions returning commands”, if you will. The pointed
arrow notation supports this too. Parameterised commands are represented as
arrows with types of the form arr (env, a) b, where env is the type of the
environment and the b the type of the result, as usual, but a is the type of the
parameter. Such parameterised commands can be constructed using lambda-
notation: the command \x -> cmd is translated into an arrow taking a pair of
the current environment and a value for x, to the output of cmd. The translation
rule is (roughly)

proc pat -> \x -> c −→ proc (pat,x) -> c

Likewise the command cmd e can be thought of as supplying such a parameter:
cmd is expected to be a command taking a pair of an environment and value
as input, and cmd e is a command which just takes the environment as input,
and extends the environment with the output of e before passing it to cmd. The
translation rule is (roughly)

proc pat -> c e −→ arr (\pat -> (pat,e)) >>> proc pat -> c

See the GHC documentation for more details on the translation.
As an example, let us define a command combinator corresponding to map.

The arrow map we have already defined,

mapA :: ArrowChoice arr => arr a b -> arr [a] [b]

is not suitable, because it changes the type of the input in a way which is not
allowable. Let us instead pair the input of both the argument and result arrow
with the environment:

mapC :: ArrowChoice arr => arr (env,a) b -> arr (env,[a]) [b]
mapC c = proc (env,xs) ->
case xs of
[] -> returnA -< []
x:xs’ -> do y <- c -< (env,x)

ys <- mapC c -< (env,xs’)
returnA -< y:ys

With this type, mapC can be used as a command combinator. To apply it, we
have to first apply the command combinator mapC to a command abstraction
(inside banana brackets), and then apply the resulting command to a suitable
list (no banana brackets). For example,

example2 = proc (n,xs) ->
(| mapC (\x-> do delay 0 -< n

&&& do returnA -< x) |) xs

is a stream function whose input stream contains pairs of numbers and lists, and
which pairs each element of such a list (using mapC) with a delayed number from
the foregoing input stream element. It can be run as follows:

Programming with Arrows 101

Main> runSF example2 [(1,[1,2]),(3,[4]),(5,[6,7])]
[[(0,1),(0,2)],[(1,4)],[(3,6),(3,7)]]

The example may seem a little contrived, but its purpose is to illustrate the be-
haviour when the argument of mapC refers both to its parameter and a free vari-
able (n). A much more useful example of this can be found in Exercise 4d below.

Taken together, these extensions provide us with a comprehensive notation
for pointed programming with arrows, which leads to programs which, superfi-
cially at least, resemble monadic programs very closely.

3.5 Exercises

1. Adder. An n-bit adder can be built out of full adders using the design shown
in Figure 4, which adds two numbers represented by lists of booleans, and
delivers a sum represented in the same way, and a carry bit. Simulate this
design by defining
adder :: Arrow arr => Int ->

arr ([Bool],[Bool]) ([Bool],Bool)

Represent the inputs and the sum with the most significant bit first in the list.
2. Bit serial adder. A bit-serial adder can be constructed from a full adder

using feedback, by the circuit in Figure 5. The inputs are supplied to such
an adder one bit at a time, starting with the least significant bit, and the
sum is output in the same way. Model this circuit with an arrow
bsadd :: ArrowCircuit arr => arr (Bool,Bool) Bool

Use the rec arrownotation to obtain feedback. The showSignal function from
module Circuitsmay be useful again for visualising the inputs and outputs.

3. Filter.
(a) Define

filterA :: ArrowChoice arr => arr a Bool -> arr [a] [a]

again (as in exercise 1 in section 2.5), but this time use the pointed arrow
notation.

(b) Now define a command combinator filterC:
filterC :: ArrowChoice arr =>

arr (env,a) Bool -> arr (env,[a]) [a]

and test it using the following example:
test :: Show a => Kleisli IO [a] [a]
test = proc xs -> (|filterC (\x->Kleisli keep-<x)|) xs
where keep x = do putStr (show x++"? ")

s <- getLine
return (take 1 s == "y")

Running this example might yield:

Main> runKleisli (test3 >>> Kleisli print) [1..3]
1? y
2? n
3? y
[1,3]

102 J. Hughes

sum1

Adder
Full

Adder
Full

Adder
Full

y2

carry

carry

carry

sum2

x3
y3

x2

x1
y1

sum3

Fig. 4. A 3-bit adder built from full adders

delay

Adder

Fully

x sum

carry

Fig. 5. A bit-serial adder

4. Counters.
(a) One of the useful circuit combinators used in the Lava hardware descrip-

tion environment [15] is row, illustrated in Figure 6. Let us represent f
by an arrow from pairs to pairs,

f :: arr (a,b) (c,d)

with the components representing inputs and outputs as shown:

Programming with Arrows 103

f f f f

Fig. 6. A row of f

d
f

a
b

c
Define a command combinator

rowC :: Arrow arr =>
Int ->
arr (env,(a,b)) (c,a) ->

arr (env,(a,[b])) ([c],a)

to implement the connection pattern in the Figure.
(b) A one-bit counter can be constructed using the circuit diagram in

Figure 7. Implement this as an arrow using the pointed arrow notation:

counter1bit :: ArrowCircuit arr => arr Bool (Bool,Bool)

(c) An n-bit counter can be built by connecting n 1-bit counters in a row,
with the carry output of each counter connected to the input of the
next. (Note that, in this case, the vertical input of the row is unused).
Implement an n-bit counter using your rowC command combinator.

(d) In practice, it must be possible to reset a counter to zero. Modify your
one bit counter so that its state can be reset, changing its type to

counter1bit :: ArrowCircuit arr =>
arr (Bool,Bool) (Bool,Bool)

to accomodate a reset input. Now modify your n-bit counter to be reset-
table also. This kind of modification, which requires feeding a new signal
to every part of a circuit description, would be rather more difficult
without the arrow notation.

104 J. Hughes

sum

Adder
Half

delay

carry

Fig. 7. A 1-bit counter

4 Implementing Arrows

We began section 2 by comparing the types of the sequencing operators for
monads and arrows respectively:

class Monad m where
(>>=) :: m b -> (b -> m c) -> m c
...

class Arrow arr where
(>>>) :: arr a b -> arr b c -> arr a c
...

As we observed then, the fact that the second argument of (>>=) is a Haskell
function gives the user a great deal of expressivity “for free” — to obtain similar
expressivity with the arrows interface, we have to introduce a large number of
further operations on the arrow types. However, there is another side to this
coin. When we implement a monad, the (>>=) can do nothing with its second
argument except apply it — the (>>=) operator is forced to treat its second
operand as abstract. When we implement an arrow, on the other hand, the
(>>>) can inspect the representation of its second operand and make choices
based on what it finds. Arrows can carry static information, which is available
to the arrow combinators, and can be used to implement them more efficiently.

This was, in fact, the original motivation for developing arrows. Swierstra
and Duponcheel had developed a parsing library, in which the representation
of parsers included a list of starting symbols, and the choice combinator made
use of this information to avoid backtracking (which can incur a heavy space
penalty by saving previous states in case it is necessary to backtrack to them)
[24]. Their parsing library, in contrast to many others, did not — indeed, could
not — support a monadic interface, precisely because the starting symbols of
f >>= g cannot be determined in general without knowing the starting symbols
of both f and g, and the latter are not available to (>>=). It was the search for an
interface with similar generality to the monadic one, which could be supported
by Swierstra and Duponcheel’s library, which led to my proposal to use arrows.

Programming with Arrows 105

However, since parsing arrows have been discussed in several papers already, we
will take other examples in these notes.

4.1 Optimising Composition

For some arrow types (such as stream transformers), composition is quite expen-
sive. Yet in some cases it can be avoided, by applying arrow laws. For example,
one law states that

arr f >>> arr g = arr (f >>> g)

but whereas the left hand side involves composition of arrows, the right hand side
involves only composition of functions. Replacing the left hand side by the right
may thus be an optimisation — in the case of stream functions, it corresponds
to optimising map f.map g to map (f.g).

Suppose, now, that we represent arrows constructed by arr specially, so
that the implementation of (>>>) can recognise them. Then we can apply this
optimisation dynamically, every time a composition of two such pure arrows is
constructed!

To implement this optimisation in as general a form as possible, we define
a new arrow type Opt arrow, based on an underlying arrow type arrow, which
represents arrows of the form arr f specially.

data Opt arrow a b = Arr (a->b)
| Lift (arrow a b)

Thus an Opt arrow arrow is either the special case arr f, or just contains
an arrow of the underlying type. We can recover an underlying arrow from an
Opt arrow arrow using the function

runOpt (Arr f) = arr f
runOpt (Lift f) = f

Now we implement the Arrow operations as follows:

instance Arrow arrow => Arrow (Opt arrow) where
arr = Arr
Arr f >>> Arr g = Arr (f>>>g)
f >>> g = Lift (runOpt f>>>runOpt g)
first (Arr f) = Arr (first f)
first (Lift f) = Lift (first f)

We implement arr just by building the special case representation, and each of
the other operations by first testing for the special case and optimising if possible,
then falling through into a general case which just converts to the underlying
arrow type and applies the same operation there. The other arrow classes can be
implemented in a similar way. Yampa [8], perhaps the most extensive application
of arrows, makes use of just such an optimisation — with the addition of another
special form for constant arrows (of the form arr (const k)).

106 J. Hughes

This is an example of an arrow transformer or functor, analogous to a monad
transformer. In his experimental arrow library [16], Paterson defines a class of
arrow transformers:

class (Arrow a, Arrow (f a)) => ArrowTransformer f a where
lift :: a b c -> f a b c

(The library contains a number of useful transformers, corresponding to many
of the well-known monad transformers, plus several which make sense only for
arrows). We can declare Opt to be an arrow transformer very simply:

instance Arrow arrow => ArrowTransformer Opt arrow where
lift = Lift

This idea can be taken further, of course. As it stands, the optimisation of
composition is applied only if compositions are bracketed correctly — a term
such as (Lift f >>> arr g) >>> arr h would not be optimised, because the
leftmost composition constructs the arrow Lift (f >>> arr g), which cannot
be optimised by the rightmost composition.

Let us see how to improve this, by taking advantage of the associativity
of composition. Rather than representing optimised arrows as one of the forms
arr f or lift g, let us use the forms arr f and arr f >>> lift g >>> arr h.
The advantage of this latter form is that we can keep the “pure part” of each
arrow separate on both the left and the right, thus making it possible to optimise
compositions with pure arrows on both sides.

We need existential types to represent these forms in a data structure, be-
cause in the form arr f >>> lift g >>> arr h then the arrow g may have
any type at all. The Opt type becomes

data Opt arrow a b = Arr (a->b)
| forall c d. ALA (a->c) (arrow c d) (d->b)

(where ALA stands for arr-lift-arr: a value of the form ALA f g h represents
arr f >>> lift g >>> arr h). We lift underlying arrows to this type by pre-
and post-composing with the identity arrow:

instance ArrowTransformer Opt arrow where
lift f = ALA id f id

We convert back to the underlying arrow type in the obvious way:

runOpt :: Arrow arrow => Opt arrow a b -> arrow a b
runOpt (Arr f) = arr f
runOpt (ALA pre f post) = arr pre >>> f >>> arr post

The implementations of the arrow operations just take advantage of the known
pure parts to construct compositions of functions, rather than the underlying
arrow type, wherever possible.

Programming with Arrows 107

instance Arrow arrow => Arrow (Opt arrow) where
arr = Arr

Arr f >>> Arr g = Arr (f>>>g)
Arr f >>> ALA pre g post = ALA (f >>> pre) g post
ALA pre f post >>> Arr g = ALA pre f (post >>> g)
ALA pre f post >>> ALA pre’ g post’ =
ALA pre (f >>> arr (post>>>pre’) >>> g) post’

first (Arr f) = Arr (first f)
first (ALA pre f post) =
ALA (first pre) (first f) (first post)

In the code above, the only composition at the underlying arrow type takes place
in the last equation defining (>>>), when two impure arrows are composed.
Writing out the left and right hand sides as their interpretations, this equation
reads

arr pre >>> f >>> arr post >>> arr pre’ >>> g >>> arr post’
=
arr pre >>> (f >>> arr (post >>> pre’) >>> g) >>> arr post’

and we see that, even in this case, one arrow composition is converted into a
composition of functions (post and pre’).

However, as it stands this implementation is not a good one, because every
time we lift an underlying arrow to the Opt type, we insert two identity functions,
which must later be composed with the underlying arrow. Lifting an arrow f and
then running it actually introduces two new arrow compositions:

runOpt (lift f) = runOpt (ALA id f id)
= arr id >>> f >>> arr id

Thus lifting computations into the “optimised” arrow type might well make them
run slower. But we can avoid this overhead, in either of two different ways:

– We can introduce new constructors in the Opt type, to represent arrows of the
form lift f, lift f>>>arr g, and arr f>>>lift g. With these additional
constructors, no identity functions need be introduced, and so no spurious
compositions are necessary.

– We can change the representation of the pre and post functions to make
the identity function recognisable, so we can treat it as a special case.

The first solution is straightforward but slightly inelegant, since it leads to rather
long and repetetive code. The second solution gives us an opportunity to define
another arrow transformer, which optimises composition with the identity, using
the same approach as in this section. One can go on to build optimising arrow
transformers that implement more and more algebraic laws; we skip the details
here. We remark only that the generalised algebraic data types recently added
to GHC [20] are invaluable here, allowing us to define constructors such as

108 J. Hughes

First :: Opt arrow a b -> Opt arrow (a,c) (b,c)

whose result type is not of the usual form, so that we can pattern match on, and
thus optimise, arrows built using the first combinator.

5 Arrows for Simulation

In the last section of these notes, we will carry through an extended example
of defining a prototype arrow library with richer functionality. Staying with
the application area of circuit simulation, we will construct a library which can
perform more accurate timing simulations. The stream functions we used earlier
perform a synchronous, or “cycle based” simulation, which proceeds in discrete
steps, and computes the value of every signal at every step. This is why, when
we defined the arrow operations, we could assume that each stream functions
produced one output for each input. This kind of simulation is costly if the
time represented by each step is short (because there must be many steps), and
inaccurate if it is long (because potentially many changes in a signal during one
step must be approximated by a single value). In contrast, our new library will
track every change in a signal’s value, no matter how often they occur, but incur
costs only when signals actually do change. It will implement a form of discrete
event simulation.

To give a flavour of the library, here is how we might use it to simulate a
flip-flop, in which the two NOR-gates have slightly different gate delays. The
description of the flip-flop itself is not unlike those we have already seen — we
shall see the details later. When we run the simulation, we provide a list of all
the changes in the value of the input, with the times at which they occur:

Sim> runSim (printA "input " >>>
cutoff 6.5 flipflop >>>
printA "output")

(False,False)
[Event 1 (False,True), Event 2 (False,False), ...]

The arrow we are simulating contains “probes” of the form printA s, which
behave as identity arrows but also print the values which pass through them. We
also specify a time at which simulation should end. The output of the simulation
tells us how the probed signals changed over time:

input : (False,False)@init
output: (False,True)@init
input : (False,True)@1.0
output: (False,False)@1.1
output: (True,False)@1.2100000000000002
input : (False,False)@2.0
input : (True,False)@3.0
output: (False,False)@3.11
output: (False,True)@3.21

Programming with Arrows 109

input : (False,False)@4.0
input : (True,True)@5.0
output: (False,False)@5.1
input : (False,False)@6.0
output: (False,True)@6.1
output: (True,True)@6.109999999999999
output: (False,True)@6.209999999999999
output: (False,False)@6.209999999999999
output: (False,True)@6.309999999999999
output: (True,True)@6.3199999999999985
output: (False,True)@6.419999999999998
output: (False,False)@6.419999999999998

We can see that when the set or reset input goes high, the flip-flop responds by
quickly setting the appropriate output high, after a brief moment in which both
outputs are low. When both inputs go low, the output does not change, and no
event appears in the trace above. If both inputs are high simultaneously, and
then drop, then the flip-flop becomes unstable and begins to oscillate, generating
many output events although no further events appear in the input.

One application for this more accurate kind of simulation is power estimation
for integrated circuits. Although the behaviour of such a circuit can be simulated
by a synchronous simulation which just computes the final value of each signal on
each clock cycle, the power consumption depends also on how many times each
signal changes its value during a clock cycle. This is because much of the power in
such a circuit is consumed charging and discharging wires, and if this happens
several times during one clock cycle, the power consumed is correspondingly
higher.

Like the stream functions arrow, our new simulation arrows represent a kind
of process, transforming input events to output events. They are thus a rather
typical kind of application for arrows, and useful to study for that reason. More-
over, this library (although much smaller) is closely related to the Yampa sim-
ulation library [8] — many design decisions are resolved in the same way, and
the reader who also studies the internals of Yampa will find much that is famil-
iar. However, there is also much that is different, since Yampa is not a discrete
event simulator: Yampa simulations proceed in steps in which every signal is
calculated, although the “sampling interval” between steps can vary.

5.1 Signals and Events

Abstractly, we think of the inputs and outputs of simulation arrows as signals,
which are piecewise constant functions from time to values. Times may be any
real number:

type Time = Double

and we explicitly allow negative times. We refer to a change in a signal’s value as
an event, and require the event times for each signal to form a (possibly infinite)

110 J. Hughes

increasing sequence. That is, each signal must have a first event before which it
has a constant value no matter how far back in time we go, and after each event
there must be a next event. We can thus represent a signal by its initial value,
and the events at which its value changes3. We shall represent events by the type

data Event a = Event {time::Time, value::a}

The value of a signal at time t will be the initial value, if t is before the time of
the first event, or the value of the last event at a time less than or equal to t.

This abstract view of signals fits our intended application domain well, but
it is worth noting that we are ruling out at least one useful kind of signal: those
which take a different value at a single point only. Consider an edge detector for
example: when the input signal changes from False to True, we might expect
the output signal to be True at the time of the change, but False immediately
before and after. We cannot represent this: if the output signal takes the value
True at all, then it must remain True throughout some non-zero interval — it
would be non-sensical to say that the output signal has both a rising and a falling
event at the same time.

Of course, a hardware edge detector must also keep its output high for a
non-zero period, so our abstraction is realistic, but nevertheless in some types of
simulation we might find it useful to allow instantaneously different signal values.
For example, if we were simulating a car wash, we might want to represent the
arrival of a car as something that takes place at a particular instant, rather
than something that extends over a short period. What Yampa calls “events”
are in fact precisely such signals: they are signals of a Maybe type whose value is
Nothing except at the single instant where an event occurs. We could incorporate
such signals into our model by associating two values with each event, the value
at the instant of the event itself, and the value at later times, but for simplicity
we have not pursued this approach.

5.2 Simulation Arrows

We might expect a simulation arrow just to be a function from a list of input
events to a list of output events, rather like the stream function arrows of Sec-
tion 1.2. Unfortunately, this simple approach does not work at all. To see why
not, consider a simulated adder, which combines two input integer signals to
an output integer signal. Clearly, whenever an event occurs on either input, the
adder must produce an event on its output with the new sum. So, to decide
which output event to produce next, the adder must choose the earliest event
from its next two input events. If these are supplied as lists of events, then this
cannot be done without inspecting, and thus computing, both of them — and

3 The reader might be tempted to treat the initial value as an event at time “minus
infinity”, to avoid introducing a special case. It is tempting, but it does not work
well: at a number of places in the simulation code, the initial value of a signal must
be treated differently from the later ones. Exactly the same design choice is made in
Yampa, so there is safety in numbers!

Programming with Arrows 111

one of them may lie far in the simulated future. In the presence of feedback, it
is disastrous if we cannot compute present simulated events without knowing
future ones, since then events may depend on themselves and simulation may
be impossible. Hence this approach fails. We will use an approach related to the
stream processors of Exercise 2 instead.

Abstractly, though, we will think of a simulation arrow as a function from
an input signal to an output signal. (In practice, we shall parameterise sim-
ulation arrows on a monad, but we ignore that for the time being). But we
place two restrictions on these functions: they should respect causality, and be
time-invariant.

Causality means that the output of an arrow at time t should not be affected
by the value of its input at later times: the future may not affect the past.
Causality is a vital property: it makes it possible to run a simulation from earlier
times to later ones, without the need to return to earlier times and revise the
values of prescient signals when later events are discovered.

Time-invariance means that shifting the input signal of an arrow backwards
or forwards in time should shift the output signal in the same way: the behaviour
should not depend on the absolute time at which events occur. One important
consequence is that the output of an arrow cannot change from its initial value
until the input has (since any such event can depend only on the constant part
of the input by causality, and so can by shifted arbitrarily later in time by time
invariance). This relieves the simulator of the need to simulate all of history,
from the beginning of time until the first input event, since we know that all
signals must retain their initial values until that point.

We shall represent simulation arrows by functions from the initial input value,
to the initial output value and a simulation state:

newtype Sim m a b = Sim (a -> m (b, State m a b))

This state will then evolve as the simulation proceeds, and (in general) it depends
on the initial input value. We parameterise simulation arrows on a monad m (in
our examples, the IO monad), so that it is possible to define probes such as
printA, which we saw in the introduction to this section.

A running simulation can be in one of three states, which we represent using
the following type:

data State m a b =
Ready (Event b) (State m a b)

| Lift (m (State m a b))
| Wait Time (State m a b) (Event a -> State m a b)

Here

– Ready e s represents a simulation that is ready to output e, then behave
like s,

– Lift m represents a simulation that is ready to perform a computation m in
the underlying monad, then continue in the state that m delivers,

112 J. Hughes

– Wait t s k represents a simulation that is waiting for an input event until
time t: if an input arrives before time t, then it is passed to the continuation
k, and if no input arrives before simulated time reaches t then the simulation
changes to the “timeout” state s.

Conveniently, Haskell’s Double type includes the value infinity,

infinity = 1/0

which behaves as a real number greater than all others. We can thus represent
a simulation state which is waiting for ever using Wait infinity.

Given an initial input value and a list of input events, we run a simulation
simply by supplying the inputs at the right simulated times and performing
the underlying monadic actions, in simulated time order. We can discard the
outputs, since simulations are observed by inserting probes. Thus:

runSim (Sim f) a as = do
(b,r) <- f a
runState r as

runState (Ready b s) as = runState s as
runState (Lift m) as = do s <- m

runState s as
runState (Wait t s k) [] -- no further inputs
| t==infinity = return () -- infinity never comes
| otherwise = runState s [] -- timeout

runState (Wait t s k) (a:as) -- inputs waiting
| t <= time a = runState s (a:as) -- timeout
| otherwise = runState (k a) as -- supply event

Simulation states should satisfy a number of invariants, of course. Since they
represent signal functions, no output events should be generated before the first
input, and output events should not depend on later inputs. To ensure the latter
property, we require that output events generated after an input is received
carry the same or a later time. Moreover, output events must be generated
in time order.

Since simulation states are in general infinite, we cannot check whether or
not these invariants are satisfied, but we can guarantee them by construction.
We therefore define “smart constructors” for the Sim and State types, which
check that the values they are constructing satisfy the invariants, and raise an
exception if an invariant would be broken. We ensure that simulation states are
initially quiescent by constructing them with

sim f = Sim $ \a -> do
(b,s) <- f a
return (b,quiescent s)

quiescent (Lift m) = Lift (liftM quiescent m)
quiescent (Wait t s k) = wait t (quiescent s) k

Programming with Arrows 113

which fails if the constructed state is ready to output before the first input, and
we ensure the other invariants hold by constructing simulation states using

ready e r = Ready e (causal (time e) r)
lift m = Lift m
wait t f k = Wait t (causal t f)

(\e -> causal (time e) (k e))

causal t (Ready e f) | t <= time e = Ready e f
causal t (Lift m) = Lift (liftM (causal t) m)
causal t (Wait t’ s k) = Wait t’ (causal t s) (causal t.k)

Here causal t s raises an exception if the first event output by s precedes
time t; provided s itself satisfied the invariants then this is enough to ensure
that the states constructed using causal also do so. It is used in ready to ensure
that output events occur in increasing time order, and in wait to ensure that
output events do not precede inputs which have been received, or timeouts which
have passed. The alert reader will notice that causal does not prevent successive
output events occurring at the same time, and this is because such “glitches” do
seem occasionally to be unavoidable (we will return to this point).

Using these smart constructors, we can now define primitive arrows with
confidence that mistakes that break the invariants will not go undiscovered, at
least not if they would affect the results of simulation. For example, we can
define the printA arrow that we saw above as follows:

printA name = sim $ \a -> do
message (show a++"@init")
return (a,s)
where s = waitInput $ \a -> lift $ do

message (show a)
return (ready a s)

message a = putStrLn (name++": "++a)

(The show method for events is defined to display the value along with the
time, in the format we saw earlier). Typically the simulation state is defined
recursively, as we see here, in order to respond to any number of input events.
The waitInput function is just a useful shorthand for a wait with an infinite
timeout:

waitInput k = wait infinity undefined k

Of course, it is not necessary to define smart constructors as we have done:
we could simply replace them with the real ones, and provided we make no mis-
takes, our simulations would behave identically. However, the smart constructors
have proven to be invaluable while debugging the library. Indeed, the real code
contains a more elaborate version of causal, which collects and reports a trace
of the events leading up to a violation, which is invaluable information when a
bug is discovered.

114 J. Hughes

Note, however, that these smart constructors do not ensure time invariance in
the arrows we write, because we write code which manipulates absolute times. It
would be possible to build a further layer of abstraction on top of them, in which
we would program with relative times only (except in monadic actions which do
not affect future output, such as printing the simulated time in printA). For
this prototype library, however, this degree of safety seems like overkill: we rely
on writing correct code instead.

5.3 Implementing the Arrow Operations

In this section, we shall see how to implement the arrow operations for this type.
Of course, we must require the underlying monad to be a monad:

instance Monad m => Arrow (Sim m) where
...

The arr operation is rather simple to define: arr f just applies f to the initial
input value, and to the value in every subsequent input event. Computing a new
output takes no simulated time.

arr f = sim $ \a -> return (f a, s)
where s = waitInput (\a ->

ready (Event (time a) (f (value a))) s)

Note, however, that the output events generated may well be redundant. For
example, if we simulate an AND-gate as follows:

Main> runSim (arr (uncurry (&&)) >>> printA "out") (False,False)
[Event 1 (False,True),
Event 2 (True,False),
Event 3 (True,True)]

out: False@init
out: False@1.0
out: False@2.0
out: True@3.0

then we see that the output signal carries three events, even though the value
only changes once.

Redundant events are undesirable, even if they seem semantically harmless,
because they cause unnecessary computation as later parts of the simulation
react to the “change” of value. Our approach to avoiding the problem is to
define an arrow nubA which represents the identity function on signals, but drops
redundant events. Inserting nubA into the example above, we now see the output
we would expect:

Main> runSim (arr (uncurry (&&)) >>> nubA >>> printA "out")
(False,False)
[Event 1 (False,True),

Programming with Arrows 115

Event 2 (True,False),
Event 3 (True,True)]

out: False@init
out: True@3.0

Defining nubA just involves some simple programming with our smart
constructors:

nubA :: (Eq a, Monad m) => Sim m a a
nubA = sim $ \a -> return (a,loop a)
where loop a = waitInput $ \(Event t a’) ->

if a==a’ then loop a
else ready (Event t a’) (loop a’)

Why not just include this in the definition of arr? Or why not rename the old
definition of arr to protoArr and redefine arr as follows?

arr f = protoArr f >>> nubA

The reason is types: we are constrained by the type stated for arr in the Arrow
class. The definition above does not have that type — it has the type

arr :: (Arrow arr, Eq b) => (a->b) -> arr a b

with the extra constraint that the output type must support equality, so that
nubA can discard events with values equal to previous one. Of course, we could
just define arr’ as above, and use that instead, but any overloaded arrow func-
tions which we use with simulation arrows, and the code generated from the
pointed arrow notation, will still use the class method arr. For this reason we
make nubA explicit as an arrow, and simply expect to use it often4.

Composing simulation arrows is easy — we just have to compute the initial
output — but the real work is in composing simulation states.

Sim f >>> Sim g = sim $ \a -> do
(b,sf) <- f a
(c,sg) <- g b
return (c,sf ‘stateComp‘ sg)

When we compose simulation states, we must be careful to respect our invariants.
Since all the outputs of a composition are generated by a single arrow (the second
operand), which should itself fulfill the invariants, we can expect them to be
correctly ordered at least. However, we must see to it that no output is delayed
until after a later input is received by the first operand, which would violate
4 It is interesting to note that the same problem arose in a different context in the

first arrow paper [10]. I have proposed a language extension that would solve the
problem, by allowing parameterised types to restrict their parameters to instances
of certain classes only [9]. With this extension, simulation arrows could require that
their output type be in class Eq, making equality usable on the output even though
no such constraint appears in the Arrow class itself.

116 J. Hughes

causality. To ensure this, we always produce outputs (and perform monadic
actions) as early as possible. Thus, if the second operand of a composition is
ready to output an event or perform a monadic computation, then so is the
composition.

sf ‘stateComp‘ Ready c sg = ready c (sf ‘stateComp‘ sg)
sf ‘stateComp‘ Lift m = lift (liftM (sf‘stateComp‘) m)

If neither of these equations applies, then the second operand must be of the form
Wait We assume this in the equations that follow — thanks to Haskell’s
top-to-bottom strategy, the equations above take precedence over (apparently
overlapping) equations below.

Given that the second operand is waiting, then if the first is ready to output or
perform a computation, then we allow it to proceed, in the hope that it will wake
up the second operand, and enable us to generate an event from the composition
without needing to wait for an input. When the first operand outputs an event,
then we must of course feed it into the second. This is the purpose of the operator
‘after‘, which computes the state of sg after it has received the event b. Thus
‘after‘ is the state transition function for simulation states.

Ready b sf ‘stateComp‘ sg = sf ‘stateComp‘ (sg ‘after‘ b)
Lift m ‘stateComp‘ sg = lift (liftM (‘stateComp‘ sg) m)

When both operands of a composition are waiting, then the composition must
also wait — but only until the earlier of the deadlines of its operands. When
that simulated time is reached, the operand with the earlier deadline times out
and may continue computing. If an input event is received in the meantime, it
is sent (of course) to the first operand of the composition.

Wait tf sf kf ‘stateComp‘ Wait tg sg kg =
wait (min tf tg)

timeout
(\a -> kf a ‘stateComp‘ Wait tg sg kg)

where timeout | tf<tg = sf ‘stateComp‘ Wait tg sg kg
| tf==tg = sf ‘stateComp‘ sg
| tf>tg = Wait tf sf kf ‘stateComp‘ sg

Note that this code behaves correctly even if one or both deadlines is infinity.
To complete the definition of composition, we must implement the state

transition function after. But this is easy: an input event is received by the
first Wait whose deadline is after the event itself:

Ready b s ‘after‘ a = ready b (s ‘after‘ a)
Lift m ‘after‘ a = lift (liftM (‘after‘ a) m)
Wait t s k ‘after‘ a
| t <= time a = s ‘after‘ a
| otherwise = k a

Moving on to the first combinator, once again computing the initial output is
easy, but adapting the simulation state much more complex.

Programming with Arrows 117

simFirst (Sim f) = sim $ \(a,c) -> do
(b,s) <- f a
return ((b,c), stateFirst b c s)

When does the output of first f change? Well, clearly, if the output of f
changes, then so does the output of first f. But the output of first f may also
change if its input changes, since the change may affect the second component of
the pair, which is fed directly through to the output. Moreover, when the output
of f changes, then we need to know the current value of the second component
of the input, so we can construct the new pair of output values. Likewise, when
the input to first f changes, and we have a new second component for the
output pair, then we need to know the current value of the first component of
the output to construct the new output pair. For this reason, the stateFirst
function is parameterised not only on the state of f, but also on the current
values of the components of the output.

In the light of this discussion, we can see that if f is waiting, then first f
should also wait: no change to the output can occur until either the deadline
is reached, or an input is received. If an input is received before the deadline,
then first f is immediately ready to output a new pair containing an updated
second component.

stateFirst b c (Wait t s k) =
wait t (stateFirst b c s) $ \(Event t’ (a,c’)) ->
ready (Event t’ (b,c’)) (stateFirst b c’ (k (Event t’ a)))

As before, if f is ready to perform a monadic action, then so is first f:

stateFirst b c (Lift m) = lift (liftM (stateFirst b c) m)

The trickiest case is when f is ready to output an event. Before we can actually
output the corresponding event from first f, we must ensure that there are
no remaining inputs at earlier times, which would cause changes to the output
of first f that should precede the event we are about to generate. The only
way to ensure this is to wait until the simulated time at which the event should
occur, and see whether we timeout or receive an input. Thus we define:

stateFirst b c (Ready b’ s) =
wait (time b’)

(ready (Event (time b’) (value b’,c))
(stateFirst (value b’) c s))

(\(Event t’ (a,c’)) ->
ready (Event t’ (b,c’))

(stateFirst b c’
(ready b’ (s ‘after‘ (Event t’ a)))))

After waiting without seeing an input until the time of the new event, we can
generate a new output immediately. If an input is received in the meantime, we
generate a corresponding output event and continue waiting, but in the state

118 J. Hughes

we reach by feeding the first component of the input just received into the
state of f.

This definition seems very natural, but it does exhibit a surprising behaviour
which we can illustrate with the following example:

Sim> runSim (first (arr (+1)) >>> printA "out") (0,0)
[Event 1 (1,1)]

out: (1,0)@init
out: (1,1)@1.0
out: (2,1)@1.0

Although there is only one input event, first generates two output events, one
generated by the change of the input, and the other by the change in the output
of arr (+1). Moreover, both output events occur at the same simulated time —
and how should we interpret that? Our solution is to declare that when several
events appear at the same simulated time, then the last one to be generated
gives the true value of the output signal at that time. The previous events we
call “glitches”, and they represent steps towards the correct value. Glitches arise,
as in this example, when two parts of the simulation produce output events at
exactly the same time, and they are then combined into the same signal. A glitch
results because we make no attempt to identify such simultaneous events and
combine them into a single one.

We put up with glitches, because of our design decision to produce output
events as soon as possible. To eliminate them, we would, among other things,
need to change the semantics of Wait. At present, Wait times out if no input
event arrives before the deadline; we would need to change this to time out only
if the next input event is after the deadline, thus allowing inputs that arrive
exactly on the deadline to be received, possibly affecting the output at the same
simulated time. The danger would be that some arrows would then be unable
to produce their output at time t, without seeing a later input event — which
would make feedback impossible to implement. However, it is not obvious that
this would be inevitable, and a glitch-free version of this library would be worth
investigating. For the purpose of these notes, though, we stick with the glitches.

We will, however, introduce an arrow to filter them out: an arrow which
copies its input to its output, but whose output is glitch-free even when its
input contains glitches. To filter out glitches in the input at time t, we must
wait until we can be certain that all inputs at time t have been received —
which we can only be after time t has passed! It follows that a glitch-remover
must introduce a delay: it must wait until some time t’ later than t, before it
can output a copy of the input at time t. We therefore build glitch removal into
our delay arrow, which we call delay1, because there is at most one event at
each simulated time in its output.

In contrast to the delay arrow we saw earlier, in this case we do not need
to supply an initial value for the output. The stream function delay, for use in
synchronous simulation, delays its output by one step with respect to its input,
and needs an initial value to insert in the output at the first simulation step. In

Programming with Arrows 119

contrast, our signals all have an initial value “since time immemorial”, and the
output of delay1 just has the same initial value as its input.

We define delay1 as follows:

delay1 d = sim (\a -> return (a,r))
where r = waitInput loop

loop (Event t a) =
wait (t+d) (ready (Event (t+d) a) r) $
\(Event t’ a’) ->
if t==t’
then loop (Event t’ a’)
else ready (Event (t+d) a) (loop (Event t’ a’))

It delays its input signal by time d, which permits it to wait until time t+d to
be sure that the input at time t is stable.

5.4 Implementing Feedback

Just as with the other arrow combinators, implementing feedback requires two
stages: first we define loop for simulation arrows, constructing the initial values,
then we implement looping for simulation states. Now, recall that the argument
of loop is an arrow of type arr (a,c) (b,c), where c is the type of the loop
state. Clearly the initial output of this arrow will depend on its initial input,
which in turn depends on its initial output! Thus the initial output of a loop
must be recursively defined. Since simulation arrows are based on an underlying
monad, we need a fixpoint operator for that monad. Such a fixpoint operator is
provided by the class

class (Monad m) => MonadFix m where
mfix :: (a -> m a) -> m a

and there are instances for IO and many other monads.
Using this operator, we can now define loop for simulation arrows:

instance MonadFix m => ArrowLoop (Sim m) where
loop (Sim f) = sim $ \a-> do
((b,c),s) <- mfix (\(~((b,c),s)) -> f (a,c))
return (b,stateLoop a c [] s)

We just recursively construct the initial output from the parameter arrow f,
and return its first component as the initial output of the loop. Obviously, the
function we pass to mfix must not be strict, and so the lazy pattern matching
(indicated by ~) in the definition above is essential.

As simulation proceeds, the loop body f will periodically produce new out-
puts, whose second components must be fed back as changes to the input. But
those input changes must be merged with changes to the input of the loop as a
whole. We handle this by passing stateLoop a queue of pending changes to the
loop state, to be merged with changes to the loop input as those arrive. We must

120 J. Hughes

also track the current values of the loop input and the loop state, so as to be
able to construct a new input pair for the loop body when either one changes.

After this discussion, we can present the code of stateLoop. If the loop body
is ready to output, the loop as a whole does so, and the change to the loop state
is added to the pending queue.

stateLoop a c q (Ready (Event t (b,c’)) s) =
ready (Event t b) (stateLoop a c (q++[(t,c’)]) s)

If the loop body is ready to perform a monadic action, then we do so.

stateLoop a c q (Lift m) = lift $ liftM (stateLoop a c q) m

If the loop body is waiting, and there are no pending state changes, then the
loop as a whole waits. If a new input is received, then it is passed together with
the current loop state to the loop body, and the current input value is updated.

stateLoop a c [] (Wait t s k) =
wait t (stateLoop a c [] s) $ \(Event t’ a’) ->
stateLoop a’ c [] (k (Event t’ (a’,c)))

Finally, if the loop body is waiting and there are pending state changes, then
we must wait and see whether any input event arrives before the first of them.
If so, we process the input event, and if not, we make the state change.

stateLoop a c ((t’,c’):q) (Wait t s k) =
wait (min t t’) timeout $ \(Event t’’ a’) ->
stateLoop a’ c ((t’,c’):q) (k (Event t’’ (a’,c)))

where timeout
| t’<t = stateLoop a c’ q (k (Event t’ (a,c’)))
| t’>t = stateLoop a c ((t’,c’):q) s
| t’==t= stateLoop a c’ q (s ‘after‘ Event t (a,c’))

As a simple example, let us simulate a loop which simply copies its input to its
output — a loop in which the feedback is irrelevant.

Sim> runSim (loop (arr id) >>> printA "out") 0
[Event 1 1, Event 2 2]

out: 0@init
out: 1@1.0
out: 1@1.0
out: 1@1.0
out: 1@1.0
out: 1@1.0
...

It doesn’t work! The simulation produces an infinite number of glitch events, as
soon as the input changes. The reason is that the first input change generates
an output from the loop body including a “new” (but unchanged) loop state.

Programming with Arrows 121

This state change is fed back to the loop body, and generates another new (and
also unchanged) state, and so on. To avoid this, we must discard state “changes”
which do not actually change the state, by inserting a nubA arrow into the loop
body.

Sim> runSim (loop nubA >>> printA "out")
0
[Event 1 1, Event 2 2]

out: 0@init
out: 1@1.0
*** Exception: <<loop>>

This does not work either! In this case, the exception “<<loop>>” is generated
when a value depends on itself, and it is fairly clear which value that is — it
is, of course, the loop state, whose initial value is undefined5. Indeed, since the
initial value of the loop state cannot be determined from the input, there is
no alternative to specifying it explicitly. We therefore define a new combinator,
which provides the initial output value for an arrow explicitly:

initially x (Sim f) = Sim $ \a -> do (_,s) <- f a
return (x,s)

Now we can revisit our example and initialise the loop state as follows:

Sim> runSim (loop (initially (0,0) nubA) >>> printA "out") 0
[Event 1 1, Event 2 2]

out: 0@init
out: 1@1.0
out: 2@2.0

At last, it works as expected.
Now, although this example was very trivial, the difficulties that arose will

be with us every time we use loop: the loop state must (almost) always be
initialised, and we must always discard redundant state changes, to avoid gen-
erating an infinite number of events. This means that we will always need to
include nubA in a loop body. This is not an artefact of our particular library,
but a fundamental property of simulation with feedback: after an input change,
a number of state changes may result, but eventually (we hope) the state will
stabilise. A simulator must continue simulating until the state reaches a fixed
point, and that is exactly what loop with nubA does.

It would be natural, now, to include nubA in the definition of loop, since
it will always be required, but once again the type stated for loop in the class
ArrowLoop prevents us from doing so. Instead, we define a new looping combi-
nator just for simulations, which combines loop with nubA. We give it a type
analogous to mfix:
5 The generation of loop exceptions is somewhat variable between one GHC version

and another. The output shown here was generated using version 6.2.1, but other
versions might actually loop infinitely rather than raise an exception.

122 J. Hughes

afix :: (MonadFix m, Eq b) => Sim m (a,b) b -> Sim m a b
afix f = loop (f >>> nubA >>> arr id &&& arr id) >>> nubA

Because we cannot define loop to discard redundant state changes, we will not
be able to use the rec syntax in the pointed arrow notation — it is simply
impossible to insert nubA in the source code, so that it appears in the correct
place in the translation. But afix is a good alternative: it can be used as a
command combinator to good effect, as we will see in the next section.

5.5 Examples

In this section we will give just a few simple examples to show how the simulation
arrows can be used to simulate small circuits. First let us revisit the nor gate:
we can now make our simulation more realistic, by including a gate delay.

nor = proc (a,b) -> do
(a’,b’) <- delay1 0.1 -< (a,b)
returnA -< not (a’||b’)

A nor gate can be used to construct an oscillator, which generates an oscillating
signal as long as its input is low:

oscillator = proc disable ->
(|afix (\x -> nor -< (disable,x))|)

Here the output of the nor gate is fed back, using afix, to one of its inputs.
While disable is low, the nor gate simply inverts its other input, and so the
circuit acts as an inverter with its output coupled to its input, and oscillates.
When disable is high, then the output of the nor gate is always held low.
Running a simulation, we see that the oscillator behaves as expected:

Sim> runSim (oscillator >>> printA "out") True
[Event 1 False, Event 2 True]

out: False@init
out: True@1.1
out: False@1.2000000000000002
out: True@1.3000000000000003
out: False@1.4000000000000004
out: True@1.5000000000000004
out: False@1.6000000000000005
out: True@1.7000000000000006
out: False@1.8000000000000007
out: True@1.9000000000000008
out: False@2.000000000000001

Of course, it is important to initialise the input signal to True, since otherwise
the oscillator should oscillate “since time immemorial”, and we cannot represent
that. If we try, we find that the output of the oscillator is undefined.

It is interesting that in this example, we did not need to initialise the oscillator
state. This is because the initial state is the solution to the equation

Programming with Arrows 123

x = not (True || x)

and this is equal to False, because Haskell’s “or” operator (||) is not strict in
its second input, when the first one is True.

Finally, let us see how we can use afix to define a flip-flop:

flipflop = proc (reset,set) ->
(|afix (\ ~(x,y)->do

x’ <- initially False nor -< (reset,y)
y’ <- initially True nor -< (set,x)
returnA -< (x’,y’))|)

Although this is not quite as notationally elegant as the rec syntax, we can see
that afix does let us emulate recursive definitions rather nicely, and that we are
able to describe the flip-flop in a natural way. As usual, the argument of a fix-
point combinator cannot be strict, so we must match on the argument pair lazily.
Simulating this flip-flop, we obtain the results presented in the introduction to
this section.

5.6 Exercises

1. Circuit simulation. Revisit exercises 1, 2, and 4 of Section 3.5, and simu-
late the adder, bit serial adder, and n-bit counter using the new simulation
arrows.

2. Choice. In this section, we implemented the operations in class Arrow, but
we did not implement those in ArrowChoice. Can you construct an imple-
mentation of left for simulation arrows?

The input signal to left is of type Either a c, which we can think of as
two signals, one of type a, and one of type c, multiplexed onto one channel. It
is the signal of type a that must be provided as the input to left’s argument,
but left f receives this signal only incompletely — at times when the input
signal is carrying a Right value, then the value of the input to f is unknown.
You will need to complete this partially known input signal to construct an
input signal for f, which can be done by assuming that the signal remains
constant during the periods when it is unknown.

If the initial value of the input signal is a Right value, then we must
initialise left f without knowing the initial value of f’s input! Fortunately,
we do know the initial value of left f’s output — it is just the same as
the input in this case. We are left with the problem of initialising the arrow
f. This cannot be done at this time, because its initial input is unknown.
However, if we assume that the initial value of the Left input is the same
as the first value we see, then we can initialise f when the first event of the
form Left a is received.

The output from left f can also be thought of as two signals multiplexed
onto one channel, but in this case these signals are the Right input signal
to left f, and the output signal from f itself. How should these be mul-
tiplexed? That is, when should the output signal be taken from the Right

124 J. Hughes

input, and when should it be taken from f? It seems natural to take the
Right input when it is present, and the output from f when it is not, with
the result that the multiplexing of the output channel is the same as the
multiplexing of the input.

Implement left according to the ideas in this discussion, and experiment
with the if-then-else pointed arrow notation (which uses it) to investigate
its usefulness.

6 Arrows in Perspective

Arrows in Haskell are directly inspired by category theory, which in turn is just
the theory of arrows — a category is no more than a collection of arrows with
certain properties. Thus every time we define a new instance of class Arrow,
we construct a category! However, categorical arrows are more general than
their Haskell namesakes, in two important ways. Firstly, the “source” and “tar-
get” of Haskell arrows, that is the types of their inputs and outputs, are just
Haskell types. The source and target of a categorical arrow can be anything at
all — natural numbers, for example, or pet poodles. In the general case, most
of the operations we have considered make no sense — what would the target
of f &&& g be, in a category where the targets of arrows are natural numbers?
Secondly, Haskell arrows support many more operations than categorical arrows
do. In fact, categorical arrows need only support composition and identity ar-
rows (which we constructed as arr id). In general, categories have no equivalent
even of our arr operator, let alone all the others we have considered. Thus even
Haskell arrows which are only instances of class Arrow have much more structure
than categorical arrows do in general.

However, as we saw in the introduction, there is little interesting that can
be done without more operations on arrows than just composition. The same
is true in category theory, and mathematicians have explored an extensive flora
of additional operations that some categories have. Of particular interest to
programming language semanticists are cartesian closed categories, which have
just the right structure to model λ-calculus. In such models, the meaning of
a λ-expression is an arrow of the category, from the types of its free vari-
ables (the context), to the type of its value — compare with the translations
of Paterson’s arrow notation. The advantage of working categorically is that
one can study the properties of all semantic models at once, without cluttering
one’s work with the details of any particular one. Pierce’s book is an excel-
lent introduction to category theory from the programming language semantics
perspective [21].

One may wonder, then, whether the structure provided by Haskell arrows
has been studied by theoreticians? The answer turns out to be “yes”. Monads,
which were invented by category theorists for quite different purposes, were first
connected with computational effects by Moggi [14], who used them to structure
denotational semantic descriptions, and his work was the direct inspiration for
Wadler to introduce monads in Haskell [26]. But Power and Robinson were

Programming with Arrows 125

dissatisfied with Moggi’s approach to modelling effects, because the semantics of
terms was no longer a simple arrow in a category, but rather a combination of an
arrow and a monad. They asked the question: what properties should a category
have for its arrows to directly model computations with effects? Their answer
was to introduce “premonoidal” categories [22], now called Freyd categories,
which correspond closely to instances of class Arrow. Later, Power and Thielecke
studied the command abstractions and applications that we saw in Paterson’s
arrow notation, under the name closed κ-categories [23]. Feedback operators,
which are called trace operators by category theorists, have been studied in
this setting by Benton and Hyland [1]. This latter paper moreover makes the
connection back to Haskell programs, which can otherwise be somewhat obscured
by notational and terminological differences.

The use of arrows in programming was introduced in my paper from the
year 2000 [10]. That paper introduced the arrow classes presented here (with the
exception of ArrowLoop), arrow transformers, and a number of applications. The
direct inspiration was Swierstra and Duponcheel’s non-monadic parser library
[24], which collected static information about parsers to optimise them during
their construction. My paper showed that their library could be given an arrow
interface. While doing so, I also introduced two classes for arrows that can fail:
ArrowZero and ArrowPlus, which provide operations for failure and failure-
handling respectively. My paper also discussed stream processors, and showed
that the Fudgets GUI library [3], which is based on a kind of abstract stream
processor, can be given an arrow interface. Finally, I presented a small library
for CGI programming.

CGI scripts are small programs that run on web servers to generate dynamic
web pages. Typically, when a user fills in an HTML form in a browser, the form
data is sent to a CGI script on the server which generates the next web page
the user sees. CGI programming is awkward, because the script which generates
a form is not usually the script that processes the user’s reply. This leads to all
sorts of complication, software engineering problems, and bugs.

The key idea behind my library was for a CGI script generating a form to
suspend its own state, embed that state in a hidden field of the form (where it
is sent to the client browser and returned with the other form data once the
form is filled in), and then restart from the same state when the client’s reply
is received. That permits CGI programs to be written like ordinary interactive
programs, where communication with the client appears as a simple function
call, delivering the client’s answer as a result. My implementation was based
on an arrow type with a suspend operator. On suspension, the arrow combina-
tors constructed a kind of “program counter” for the arrow, where the program
counter for a composition, for example, recorded whether the suspension point
was in the first or second operand, and the program counter within that operand.
The program counter could then be shipped to and from the client browser,
and used to restart in the same state. This idea turns out to be useful outside
the world of arrows: Peter Thiemann realised that the same behaviour can be

126 J. Hughes

achieved elegantly using a monad, and this insight lies behind his Wash/CGI
library [25].

Ross Paterson developed the pointed arrow notation presented in these notes
[17], collaborated with Peyton-Jones on its implementation in GHC, and is one of
the people behind the arrows web page [6]. Paterson introduced the ArrowLoop
class, and has developed an extensive experimental arrow library containing
many arrow transformers, and classes to make arrows constructed using many
transformers easy to use. Paterson applied arrows to circuit simulation, and made
an arrowized version of Launchbury et als. architecture description language
Hawk [12]. A good description of this work can be found in Paterson’s excellent
tutoral on arrows [18].

Patrik Jansson and Johan Jeuring used arrows to develop polytypic data
conversion algorithms [11]. Their development is by equational reasoning, and
the advantage of arrows in this setting is just the point-free notation — Jansson
and Jeuring could have worked with monads instead, but their proofs would
have been much clumsier.

Joe English uses arrows in his library for parsing and manipulating XML
[7]. Inspired by Wallace and Runciman’s HaxML [27], XML is manipulated by
composing filters, which are almost, but not quite, functions from an a to a list
of bs. Filters are defined as an arrow type, and the advantage of using arrows
rather than a monad in this case is that the composition operator can be very
slightly stricter, which improves memory use when the filters are run.

Courney and Elliott developed an arrow-based GUI library called Fruit [5],
based on functional reactive programming. Fruit considers a GUI to be a map-
ping between the entire history of the user’s input (mouse motion, button presses,
etc), and the history of the appearance of the screen — from a user input signal
to a screen output signal. The GUIs are implemented as arrows, which leads to
a very attractive programming style.

Indeed, arrows have been adopted comprehensively in recent work on func-
tional reactive programming, now using a system called Yampa [8]. Yampa pro-
grams define arrows from input signals to output signals, where a signal, just as
in these notes, is a function from time to a value. Functional reactive program-
ming is older than arrows, of course, and in its original version programmers
wrote real functions from input signals to output signals. The disadvantage of
doing so is that signals become real Haskell values, and are passed around in
FRP programs. Since a signal represents the entire history of a value, and in
principle a program might ask for the signal’s value at any time, it is difficult
for the garbage collector to recover any memory. In the arrowized version, in
contrast, signals are not first-class values, and the arrow combinators can be
implemented to make garbage collection possible. As a result, Yampa has much
better memory behaviour than the original versions of FRP.

Finally, arrows have been used recently by the Clean group to develop graph-
ical editor components [19]. Here a GUI is seen as a kind of editor for an underly-
ing data structure — but the data structure is subject to constraints. Whenever
the user interacts with the interface, thus editing the underlying data, the editor

Programming with Arrows 127

reacts by modifying other parts, and possibly performing actions on the real
world, to reestablish the constraints. Editors are constructed as arrows from the
underlying datatype to itself: invoking the arrow maps the data modified by
the user to data in which the constraints are reestablished. This work will be
presented at this very summer school.

If these applications have something in common, it is perhaps that arrows
are used to combine an attractive programming style with optimisations that
would be hard or impossible to implement under a monadic interface. Arrows
have certainly proved to be very useful, in applications I never suspected. I hope
that these notes will help you, the reader, to use them too.

References

1. Nick Benton and Martin Hyland. Traced premonoidal categories. ITA, 37(4):273–
299, 2003.

2. R. S. Bird. A calculus of functions for program derivation. In D. Turner, editor,
Research Topics in Functional Programming. Addison-Wesley, 1990.

3. M. Carlsson and T. Hallgren. FUDGETS - A graphical user interface in a lazy
functional language. In Proceedings of the ACM Conference on Functional Pro-
gramming and Computer Architecture, Copenhagen, 1993. ACM.

4. Koen Claessen and John Hughes. Quickcheck: A lightweight tool for random test-
ing of Haskell programs. In International Conference on Functional Programming
(ICFP). ACM SIGPLAN, 2000.

5. Anthony Courtney and Conal Elliott. Genuinely functional user interfaces. In
Haskell Workshop, pages 41–69, Firenze, Italy, 2001.

6. Antony Courtney, Henrik Nilsson, and Ross Paterson. Arrows: A general interface
to computation. http://www.haskell.org/arrows/.

7. Joe English. Hxml. http://www.flightlab.com/∼joe/hxml/.
8. Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots,

and functional reactive programming. In Summer School on Advanced Functional
Programming 2002, Oxford University, volume 2638 of Lecture Notes in Computer
Science, pages 159–187. Springer-Verlag, 2003.

9. J. Hughes. Restricted Datatypes in Haskell. In Third Haskell Workshop. Utrecht
University technical report, 1999.

10. John Hughes. Generalising monads to arrows. Science of Computer Programming,
37(1–3):67–111, 2000.

11. Patrik Jansson and Johan Jeuring. Polytypic data conversion programs. Science
of Computer Programming, 43(1):35–75, 2002.

12. John Launchbury, Jeffrey R. Lewis, and Byron Cook. On embedding a microarchi-
tectural design language within Haskell. In ICFP, pages 60–69, Paris, 1999. ACM
Press.

13. Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transformers and mod-
ular interpreters. In Symposium on Principles of Programming Languages, San
Francisco, January 1995. ACM SIGPLAN-SIGACT.

14. Eugenio Moggi. Computational lambda-calculus and monads. In Proceedings 4th
Annual IEEESymp.onLogic inComputerScience,LICS’89,PacificGrove,CA,USA,
5–8 June 1989, pages 14–23. IEEE Computer Society Press, Washington, DC, 1989.

15. M. Sheeran P. Bjesse, K. Claessen and S. Singh. Lava: Hardware design in Haskell.
In ICFP. ACM Press, 1998.

128 J. Hughes

16. Ross Paterson. Arrow transformer library. http://www.haskell.org/arrows/

download.html.
17. Ross Paterson. A new notation for arrows. In ICFP, Firenze, Italy, 2001. ACM.
18. Ross Paterson. Arrows and computation. In Jeremy Gibbons and Oege De Moor,

editors, The Fun of Programming. Palgrave, 2003.
19. Rinus Plasmijer Peter Achten, Marko van Eekelen. Arrows for generic graphical ed-

itor components. Technical Report NIII-R0416, Nijmegen Institute for Computing
and Information Sciences, University of Nijmegen, 2004.

20. Simon Peyton-Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types:
type inference for generalised algebraic data types. http://research.microsoft.com/
Users/simonpj/papers/gadt/index.htm, July 2004.

21. BenjaminC.Pierce. BasicCategoryTheoryforComputerScientists. MITPress,1991.
22. John Power and Edmund Robinson. Premonoidal categories and notions of com-

putation. Mathematical Structures in Computer Science, 7(5):453–468, 1997.
23. John Power and Hayo Thielecke. Closed Freyd- and κ-categories. In J. Wieder-

mann, P. van Emde Boas, and M. Nielsen, editors, Proceedings 26th Int. Coll. on
Automata, Languages and Programming, ICALP’99, Prague, Czech Rep., 11–15
July 1999, volume 1644, pages 625–634. Springer-Verlag, Berlin, 1999.

24. D. S. Swierstra and L. Duponcheel. Deterministic, error-correcting combinator
parsers. In John Launchbury, Erik Meijer, and Tim Sheard, editors, Advanced
Functional Programming, volume 1129 of Lecture Notes in Computer Science, pages
184–207. Springer, 1996.

25. Peter Thiemann. WASH/CGI: Server-side web scripting with sessions and typed,
compositional forms. In Practical Aspects of Declarative Languages, pages 192–208,
2002.

26. P. L. Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference
on LISP and Functional Programming, Nice, pages 61–78, New York, NY, 1990.
ACM.

27. Malcolm Wallace and Colin Runciman. Haskell and XML: Generic combinators or
type-based translation? In International Conference on Functional Programming,
pages 148–159. ACM Press, 1999.

Programming with Arrows 129

Appendix: The Module Circuits.hs

module Circuits where

import Control.Arrow
import List

class ArrowLoop a => ArrowCircuit a where
delay :: b -> a b b

nor :: Arrow a => a (Bool,Bool) Bool
nor = arr (not.uncurry (||))

flipflop :: ArrowCircuit a => a (Bool,Bool) (Bool,Bool)
flipflop = loop (arr (\((a,b),~(c,d)) -> ((a,d),(b,c))) >>>

nor *** nor >>>
delay (False,True) >>>
arr id &&& arr id)

class Signal a where
showSignal :: [a] -> String

instance Signal Bool where
showSignal bs = concat top++"\n"++concat bot++"\n"
where (top,bot) = unzip (zipWith sh (False:bs) bs)

sh True True = ("__"," ")
sh True False = (" ","|_")
sh False True = (" _","| ")
sh False False = (" ","__")

instance (Signal a,Signal b) => Signal (a,b) where
showSignal xys = showSignal (map fst xys) ++

showSignal (map snd xys)

instance Signal a => Signal [a] where
showSignal = concat . map showSignal . transpose

sig = concat . map (uncurry replicate)

flipflopInput = sig
[(5,(False,False)),(2,(False,True)),(5,(False,False)),
(2,(True,False)),(5,(False,False)),(2,(True,True)),
(6,(False,False))]

Epigram: Practical Programming

with Dependent Types

Conor McBride

School of Computer Science and Information Technology,
University of Nottingham, Jubilee Campus,

Wollaton Road, Nottingham NG8 1BB, United Kingdom
ctm@cs.nott.ac.uk

1 Motivation

Find the type error in the following Haskell expression:

if null xs then tail xs else xs

You can’t, of course: this program is obviously nonsense unless you’re a type-
checker. The trouble is that only certain computations make sense if the null xs
test is True, whilst others make sense if it is False. However, as far as the type
system is concerned, the type of the then branch is the type of the else branch is
the type of the entire conditional. Statically, the test is irrelevant. Which is odd,
because if the test really were irrelevant, we wouldn’t do it. Of course, tail []
doesn’t go wrong—well-typed programs don’t go wrong—so we’d better pick a
different word for the way they do go.

Abstraction and application, tupling and projection: these provide the ‘soft-
ware engineering’ superstructure for programs, and our familiar type systems
ensure that these operations are used compatibly. However, sooner or later, most
programs inspect data and make a choice—at that point our familiar type sys-
tems fall silent. They simply can’t talk about specific data. All this time, we
thought our programming was strongly typed, when it was just our software en-
gineering. In order to do better, we need a static language capable of expressing
the significance of particular values in legitimizing some computations rather
than others. We should not give up on programming.

James McKinna and I designed Epigram [27,26] to support a way of program-
ming which builds more of the intended meaning of functions and data into their
types. Its style draws heavily from the Alf system [13,21]; its substance from my
to Randy Pollack’s Lego system [20,23] Epigram is in its infancy and its imple-
mentation is somewhat primitive. We certainly haven’t got everything right, nor
have we yet implemented the whole design. We hope we’ve got something right.
In these notes, I hope to demonstrate that such nonsense as we have seen above
is not inevitable in real life, and that the extra articulacy which dependent types
offer is both useful and usable. In doing so, I seek to stretch your imaginations
towards what programming can be if we choose to make it so.

130–170, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

Epigram: Practical Programming with Dependent Types 131

1.1 What Are Dependent Types?

Dependent type systems, invented by Per Martin-Löf [22] generalize the usual
function types S → T to dependent function types ∀x : S ⇒T , where T may
mention—hence depend on—x . We still write S → T when T doesn’t depend
on x . For example, matrix multiplication may be typed1

mult : ∀i , j , k :Nat ⇒ Matrix i j → Matrix j k → Matrix i k

Datatypes like Matrix i j may depend on values fixing some particular prop-
erty of their elements—a natural number indicating size is but one example. A
function can specialize its return type to suit each argument. The typing rules
for abstraction and application show how:

x :S � t : T
λx ⇒t : ∀x :S ⇒T

f : ∀x :S ⇒T s : S
f s : [s/x]T

Correspondingly, mult 2 3 1 : Matrix 2 3 → Matrix 3 1 → Matrix 2 1 is the
specialized multiplier for matrices of the given sizes.

We’re used to universal quantification expressing polymorphism, but the
quantification is usually over types. Now we can quantify over all values, and
these include the types, which are values in �. Our ∀ captures many forms of
abstraction uniformly. We can also see ∀x :S ⇒T as a logical formula and its in-
habitants as a function which computes a proof of [s/x]T given a particular value
s in S. It’s this correspondence between programs and proofs, the Curry-Howard
Isomorphism, with the slogan ‘Propositions-as-Types’, which makes dependent
type systems particularly suitable for representing computational logics.

However, if you want to check dependent types, be careful! Look again at
the application rule; watch s hopping over the copula,2 from the term side in
the argument hypothesis (eg., our specific dimensions) to the type side in the
conclusion (eg., our specific matrix types). With expressions in types, we must
think again about when types are equal. Good old syntactic equality won’t do:
mult (1+1) should have the same type as mult 2, so Matrix (1+1) 1 should be
the same type as Matrix21! If we want computation to preserve types, we need
at least to identify types with the same normal forms. Typechecking requires
the evaluation of previously typechecked expressions—the phase distinction is
still there, but it’s slipperier.

What I like about dependent types is their precise language of data struc-
tures. In Haskell, we could define a sequence of types for lists of fixed lengths

data List0 x = Nil
data List1 x = Cons0 x (List0 x)
data List2 x = Cons1 x (List1 x)

1 We may write ∀x :X ; y :Y ⇒ T for ∀x :X ⇒ ∀y :Y ⇒ T and ∀x1 , x2 :X ⇒ T for
∀x1 :X ; x2 :X ⇒ T . We may drop the type annotation where inferrable.

2 By copula, I mean the ‘:’ which in these notes is used to link a term to its typing:
Haskell uses ‘::’, and the bold use the set-theoretic ‘∈’.

132 C. McBride

but we’d have to stop sooner or later, and we’d have difficulty abstracting over
either the whole collection, or specific subcollections like lists of even length. In
Epigram, we can express the lot in one go, giving us the family of vector types
with indices from Nat representing length. Nat is just an ordinary datatype.

data
(

Nat : �

)
where

(
zero : Nat

)
;

(
n : Nat

suc n : Nat

)

data
(

n : Nat ; X : �
Vec n X : �

)
where

(
vnil : Vec zero X

)
(

x : X ; xs : Vec n X
vcons x xs : Vec (suc n) X

)

Inductive families [15], like Vec, are collections of datatypes, defined mutually
and systematically, indexed by other data. Now we can use the dependent func-
tion space to give the ‘tail’ function a type which prevents criminal behaviour:

vtail : ∀n :Nat ⇒ ∀X :� ⇒ Vec (suc n) X → Vec n X

For no n is vtail n X vnil well typed. Indexed types state properties of their
data which functions can rely on. They are the building blocks of Epigram pro-
gramming. Our Matrix i j can just be defined as a vector of columns, say:

let
(

rows , cols : Nat
Matrix rows cols : �

)
Matrix rows cols ⇒ Vec cols (Vec rows Nat)

Already in Haskell, there are hooks available to crooks who want more control
over data. One can exploit non-uniform polymorphism to enforce some kinds of
structural invariant [31], like this

data Rect col x = Columns [col] | Longer (Rect (col, x))
type Rectangular = Rect ()

although this type merely enforces rectangularity, rather than a specific size.
One can also collect into a Vec type class those functors which generate vector
structures [24]. Matrix multiplication then acquires a type like

mult :: (Vec f,Vec g,Vec h)=> f (g Int) -> g (h Int) -> f (h Int)

Programming with these ‘fake’ dependent types is an entertaining challenge,
but let’s be clear: these techniques are cleverly dreadful, rather than dreadfully
clever. Hideously complex dependent types certainly exist, but they express basic
properties like size in a straightforward way—why should the length of a list be
anything less ordinary than a number? In Epigram, it doesn’t matter whether
the size of a matrix is statically determined or dynamically supplied—the size
invariants are enforced, maintained and exploited, regardless of phase.

Epigram: Practical Programming with Dependent Types 133

1.2 What Is Epigram?

Epigram is a dependently typed functional programming language. On the sur-
face, the system is an integrated editor-typechecker-interpreter for the language,
owing a debt to the Alf [13,21] and Agda [12] family of proof editors. Underneath,
Epigram has a tactic-driven proof engine, like those of Coq [11] and Epigram’s
immediate ancestor, the ‘Oleg’ variant of Lego [20,23]. The latter has proof tac-
tics which mimic Alf’s pattern matching style of proof in a more spartan type
theory (Luo’s UTT [19]); James McKinna and I designed Epigram [27] as a
‘high-level programming’ interface to this technology. An Epigram program is
really a tree of proof tactics which drive the underlying construction in UTT.

But this doesn’t answer the wider cultural question of what Epigram is. How
it does it relate to functional languages like SML [29] and Haskell [32]? How does
it relate to previous dependently typed languages like DML [39] and Cayenne [4]?
How does it relate pragmatically to more conventional ways of working in type
theory in the systems mentioned above? What’s new?

I’ll return to these questions at the end of these notes, when I’ve established
more of the basis for a technical comparison, but I can say this much now: DML
refines the ML type system with numerical indexing, but the programs remain
the same—erase the indices and you have an ML program; Cayenne programs
are LazyML programs with a more generous type system, including programs
at the type level, but severely restricted support for inductive families. Epigram
is not an attempt to strap a more powerful type system to standard functional
programming constructs—it’s rather an attempt to rethink what programming
can become, given such a type system.

Dependent types can make explicit reference to programs and data. They
can talk about programming in a way that simple types can’t. In particular, an
induction principle is a dependent type. We learned this one as children:

NatInd : ∀P :Nat → � ⇒
P zero → (∀n :Nat ⇒ P n → P (suc n)) →
∀n :Nat ⇒ P n

It gives rise to a proof technique—to give a proof of a more general proposition
P n, give proofs that P holds for more specific patterns which n can take. Now
cross out ‘proof’ and write ‘program’. The induction principle for Nat specifies
a particular strategy of case analysis and recursion, and Epigram can read it as
such. Moreover, we can readily execute ‘proofs’ by induction, recursively applying
the step program to the base value, to build a proof for any specific n:

NatInd P mz ms zero � mz
NatInd P mz ms (suc n) � ms n (NatInd P mz ms n)

Usually, functional languages have hard-wired constructs for constructor case
analysis and general recursion; Epigram supports programming with any match-
ing and recursion which you can specify as an induction principle and implement
as a function. Epigram also supports a first-order method of implementing new
induction principles—they too arise from inductive families.

134 C. McBride

It may surprise (if not comfort) functional programmers to learn that de-
pendently typed programming seems odd to type theorists too. Type theory is
usually seen either as the integration of ‘ordinary’ programming with a logical
superstructure, or as a constructive logic which permits programs to be quietly
extracted from proofs. Neither of these approaches really exploits dependent
types in the programs and data themselves. At time of writing, neither Agda
nor Coq offers substantial support for the kind of data structures and programs
we shall develop in these notes, even though Alf and ‘Oleg’ did!

There is a tendency to see programming as a fixed notion, essentially untyped.
In this view, we make sense of and organise programs by assigning types to them,
the way a biologist classifies species, and in order to classify more the exotic
creatures, like printf or the zipWith family, one requires more exotic types.
This conception fails to engage with the full potential of types to make a positive
contribution to program construction. Given what types can now express, let us
open our minds afresh to the design of programming language constructs, and
of programming tools and of the programs we choose to write anyway.

1.3 Overview of the Remaining Sections

1. Warm Up;Add Up tries to give an impression of Epigram’s interactive
style programming and the style of the programs via very simple examples—
addition and the Fibonacci function. I expose the rôle of dependent types
behind the scenes, even in simply typed programming.

2. Vectors and Finite Sets introduces some very basic datatype families
and operations—I explore Vec and also the family Fin of finite enumeration
types, which can be used to index vectors. I show how case analysis for
dependent types can be more powerful and more subtle than its simply
typed counterpart.

3. Representing Syntax illustrates the use of dependent types to enforce key
invariants in expression syntax—in particular, the λ-calculus. I begin with
untyped de Bruijn terms after the manner of Bird and Paterson [9] and end
with simply typed de Bruijn terms in the manner of Altenkirch and Reus [2].3

On the way, I’ll examine some pragmatic issues in data structure design.
4. Is Looking Seeing? homes in on the crux of dependently typed program-

ming—evidence. Programs over indexed datatypes may enforce invariants,
but how do we establish them? This section explores our approach to data
analysis [27], expressing inspection as a form of induction and deriving in-
duction principles for old types by defining new families.

5. Well Typed Programs which Don’t Go Wrong shows the development
of two larger examples—a typechecker for simply typed λ-calculus which
yields a typed version of its input or an informative diagnostic, and a tagless
and total evaluator for the well typed terms so computed.

6. Epilogue reflects on the state of Epigram and its future in relation to what’s
happening more widely in type theory and functional programming.

3 As I’m fond of pointing out, these papers were published almost simultaneously and
have only one reference in common. I find that shocking!

Epigram: Practical Programming with Dependent Types 135

I’ve dropped from these notes a more formal introduction to type theory:
which introductory functional programming text explains how the typechecker
works within the first forty pages? A precise understanding of type theory isn’t
necessary to engage with the ideas, get hold of the basics and start programming.
I’ll deal with technicalities as and when we encounter them. If you do feel the
need to delve deeper into the background, there’s plenty of useful literature out
there—the next subsection gives a small selection.

1.4 Some Useful Reading

Scholars of functional programming and of type theory should rejoice that they
now share much of the same ground. It would be terribly unfortunate for the two
communities each to fail to appreciate the potential contribution of the other,
through cultural ignorance. We must all complain less and read more!

For a formal presentation of the Epigram language, see ‘The view from the
left ’ [27] For a deeper exploration of its underlying type theory—see ‘Computa-
tion and Reasoning: A Type Theory for Computer Science’ [19] by Zhaohui Luo.
User documentation, examples and solutions to exercises are available online [26].

Much of the impetus for Epigram comes from proof assistants. Proof and
programming are similar activities, but the tools have a different feel. I can
recommend ‘Coq’Art ’ [7] by Yves Bertot and Pierre Castéran as an excellent
tutorial for this way of working, and for the Coq system in particular. The
tactics of a theorem prover animate the rules of its underlying type theory, so
this book also serves as a good practical introduction to the more formal aspects.

The seminal textbook on type theory as a programming language is ‘Program-
ming in Martin-Löf’s type theory: an introduction’ [35] by Bengt Nordström,
Kent Petersson and Jan Smith. It is now fifteen years old and readily available
electronically, so there’s no excuse to consider type theory a closed book.

Type theorists should get reading too! Modern functional programming uses
richer type systems to express more of the structure of data and capture more
patterns of computation. I learned a great deal from ‘Algebra of Programming’
by Richard Bird and Oege de Moor [8]. It’s a splendid and eye-opening introduc-
tion to a more categorical and calculational style of correct program construction.
‘Purely Functional Data Structures’ by Chris Okasaki [30] is a delightful com-
pendium of data structures and algorithms, clearly showing the advantages of
fitting datatypes more closely to algorithms.

The literature on overloading, generic programming, monads, arrows, higher-
order polymorphism is too rich to enumerate, but it raises important issues which
type theorists must address if we want to make a useful contribution to functional
programming in practice. I’d advise hungry readers to start with this very series
of Advanced Functional Programming lecture notes.

1.5 For Those of You Watching in Black & White

Before we start in earnest, let’s establish typographical conventions and relate
the system’s display with these notes. Epigram’s syntax is two-dimensional: the

136 C. McBride

buffer contains a document with a rectangular region selected—highlighted with
a bright background. A document is a vertical sequence of lines; a line is a
horizontal sequence of boxes; a box is either a character, or a bracket containing
a document. A bracket is either a

group,
(!
! · · · !
!)

, which has the usual functions of parenthesis, or a

shed,
[!
! · · · !
!]

, where you can tinker with text as you please. An Epigram

line may thus occupy more than one ascii line. If a bracket is opened on a
physical line, it must either be closed on that line or suspended with a !, then
resumed on the next physical line with another !. I hasten to add that the
Epigram editor does all of this box-drawing for you. You can fit two Epigram
lines onto one physical line by separating them with ;, and split one Epigram
line into two physical lines by prefixing the second with %.

The Epigram document is a syntax tree in which leaves may be sheds—their
contents are monochrome and belong to you. You can edit any shed without
Epigram spying on you, but the rest of the document gets elaborated—managed,
typechecked, translated to UTT, typeset, coloured in and generally abused by
the system. In particular, Epigram colours recognized identifiers. There is only
one namespace—this colour is just for show. If you can’t see the colours in your
copy of these notes, don’t worry: I’ve adopted font and case conventions instead.

Blue sans serif, uppercase initial type constructor
red sans serif, lowercase initial data constructor

green serif, boldface defined variable
purple serif, italic abstracted variable
black serif, underlined reserved word

These conventions began in my handwritten slides—the colour choices are
more or less an accident of the pens available, but they seem to have stuck.
Epigram also has a convention for background colour, indicating the elaboration
status of a block of source code.

white (light green when selected) indicates successful elaboration
yellow indicates that Epigram cannot yet see why a piece of code is good

brown indicates that Epigram can see why a piece of code is bad

Yellow backgrounds come about when typing constraints cannot yet be
solved, but it’s still possible for the variables they involve to become more in-
stantiated, allowing for a solution in the future.

There are some pieces of ascii syntax which I cannot bring myself to uglify
in LATEX. I give here the translation table for tokens and for the extensible
delimiters of two-dimensional syntax:

Epigram: Practical Programming with Dependent Types 137

� ∀ λ → ∧ ⇒ ⇐
() []

* all lam -> /\ => <=
(!
!)

[!
!]

Moreover, to save space here, I adopt an end-of-line style with braces {},
where the system puts them at the beginning.

At the top level, the document is a vertical sequence of declarations delin-
eated by rules. A rule is a sequence of at least three ---. The initial document
has just one declaration, consisting of a shed, waiting for you to start work.

2 Warm Up; Add Up

Let’s examine the new technology in the context of a simple and familiar prob-
lem: adding natural numbers. We have seen this Epigram definition:4

data
(

Nat : �

)
where

(
zero : Nat

)
;

(
n : Nat

suc n : Nat

)
We can equally well define the natural numbers in Epigram as follows:

data Nat : � where zero : Nat ; suc : Nat → Nat

In Haskell, we would write ‘data Nat = Zero | Suc Nat’.
The ‘two-dimensional’ version is a first-order presentation in the style of

natural deduction rules5 [34]. Above the line go hypotheses typing the arguments;
below, the conclusion typing a template for a value. The declarations ‘zero is a
Nat; if n is a Nat, then so is suc n’ tell us what Nats look like. We get the actual
types of zero and suc implicitly, by discharging the hypotheses.

We may similarly declare our function in the natural deduction style:

let

(
x , y : Nat

plus x y : Nat

)

This signals our intention to define a function called plus which takes two
natural numbers and returns a natural number. The machine responds

plus x y []

by way of asking ‘So plus has two arguments, x and y . What should it do with
them?’. Our type signature has become a programming problem to be solved
interactively. The machine supplies a left-hand side, consisting of a function
4 Unary numbers are not an essential design feature; rest assured that primitive binary

numbers will be provided eventually [10].
5 Isn’t this a big step backwards for brevity? Or does Haskell’s brevity depend on

some implicit presumptions about what datatypes can possibly be?

138 C. McBride

symbol applied to patterns, binding pattern variables—initially, the left-
hand side looks just like the typical application of plus which we declared and
the pattern variables have the corresponding names. But they are binding oc-
currences, not references to the hypotheses. The scope of a rule’s hypotheses
extends only to its conclusion; each problem and subproblem has its own scope.

Sheds [] are where we develop solutions. The basic editing operation in
Epigram is to expose the contents of a shed to the elaborator. We can write
the whole program in one shed, then elaborate it; or we can work a little at a
time. If we select a shed, Epigram will tell us what’s in scope (here, x , y in Nat),
and what we’re supposed to be doing with it (here, explaining how to compute
plus x y in Nat). We may proceed by filling in a right-hand side, explaining
how to reduce the current problem to zero or more subproblems.

I suggest that we seek to define plus by structural recursion on x , entering
the right-hand side ⇐ recx . The ‘⇐’ is pronounced ‘by’: it introduces right-hand
sides which explain by what means to reduce the problem. Here we get

plus x y ⇐ rec x {
plus x y [] }

Apparently, nothing has changed. There is no presumption that recursion on
x will be accompanied immediately (or ever) by case analysis on x . If you select
the shed, you’ll see that something has changed—the context of the problem has
acquired an extra hypothesis, called a memo-structure. A precise explanation
must wait, but the meaning of the problem is now ‘construct plus x y , given
x , y and the ability to call to plus on structural subterms of x ’. So let us now
analyse x , proceeding ⇐ case x .

plus x y ⇐ rec x {
plus x y ⇐ case x {
plus zero y []

plus (suc x) y [] }}

The two subproblems are precisely those corresponding to the two ways x
could have been made by constructors of Nat. We can certainly finish the first
one off, entering ⇒ y . (The ‘ ⇒ ’ is ‘return’.) We can make some progress on
the second by deciding to return the successor of something, ⇒ suc [] .

plus x y ⇐ rec x {
plus x y ⇐ case x {
plus zero y ⇒ y
plus (suc x) y ⇒ suc [] }}

Select the remaining shed and you’ll see that we have to fill in an element
of Nat, given x , y and a subtly different memo-structure. Case analysis has
instantiated the original argument, so we now have the ‘ability to make recursive

Epigram: Practical Programming with Dependent Types 139

calls to plus on structural subterms of (suc x)’ which amounts to the more
concrete and more useful ‘ability to make recursive calls to plus on structural
subterms of x , and on x itself’. Good! We can finish off as follows:

plus x y ⇐ rec x {
plus x y ⇐ case x {
plus zero y ⇒ y
plus (suc x) y ⇒ suc (plus x y) }}

2.1 Who Did the Work?

Two pages to add unary numbers? And that’s a simple example? If it’s that
much like hard work, do we really want to know? Well, let’s look at how much
was work and how much was culture shock. We wrote the bits in the boxes:

let

(
x , y : Nat

plus x y : Nat

)
; plus x y ⇐ rec x {

plus x y ⇐ case x {
plus zero y ⇒ y

plus (suc x) y ⇒ suc (plus x y) }}

We wrote the type signature: we might have done that for virtue’s sake,
but virtue doesn’t pay the rent. Here, we were repaid—we exchanged the usual
hand-written left-hand sides for machine-generated patterns resulting from the
conceptual step (usually present, seldom written) ⇐ case x . This was only
possible because the machine already knew the type of x . We also wrote the
⇐ recx , a real departure from conventional practice, but we got repaid for that
too—we (humans and machines) know that plus is total.

Perhaps it’s odd that the program’s text is not entirely the programmer’s
work. It’s the record of a partnership where we say what the plan is and the
machine helps us carry it out. Contrast this with the ‘type inference’ model of
programming, where we write down the details of the execution and the machine
tries to guess the plan. In its pure form, this necessitates the restriction of plans
to those which are blatant enough to be guessed. As we move beyond the Hindley-
Milner system, we find ourselves writing down type information anyway.

‘Type inference’ thus has two aspects: ‘top-level inference’—inferring type
schemes, as with Hindley-Milner ‘let’—and ‘program inference given types’—
inferring details when a scheme is instantiated, as with Hindley-Milner variables.
Epigram rejects the former, but takes the latter further than ever. As types
represent a higher-level design statement than programs, we should prefer to
write types if they make programs cheaper.

Despite its interactive mode of construction, Epigram is fully compliant with
the convention that a file of source code, however manufactured, contains all
that’s required for its recognition as a program. The bare text, without colour
or other markup, is what gets elaborated. The elaboration process for a large
code fragment just reconstructs a suitable interactive development offstage, cued

140 C. McBride

by the program text—this is how we reload programs. You are free to negotiate
your own compromise between incremental and batch-mode programming.

2.2 Where Are the Dependent Types?

The type of plus is unremarkably simple, but if you were watching closely, you’ll
have noticed that the machine was using dependent types the whole time. Let’s
take a closer look. Firstly, a thought experiment—define a primitive recursion
operator for Nat in Haskell as follows:

primRec{−p−} :: Nat -> p -> (Nat -> p -> p) -> p
primRec{−p−} Zero mz ms = mz
primRec{−p−} (Suc n) mz ms = ms n (primRec{−p−} n mz ms)

I’ve made primRec’s type parameter explicit in a comment so we can follow what
happens as we put it to work. How might we write plus? Try applying primRec
to the first argument, then checking what’s left to do:

plus :: Nat -> Nat -> Nat
plus = \ x -> primRec{−Nat -> Nat−} x mz ms where
mz :: Nat -> Nat -- fill this in
ms :: Nat -> (Nat -> Nat) -> Nat -> Nat -- fill this in

Now we must fill in the methods mz and ms, but do their types show what
rôle they play? There are seven occurrences6 of Nat in their types—which is
which? Perhaps you can tell, because you understand primRec, but how would
a machine guess? And if we were defining a more complex function this way, we
might easily get lost—try defining equality for lists using foldr.

However, recall our NatInd principle with operational behaviour just like
primRec but a type which makes clear the relationship between the methods
and the patterns for which they apply. If we’re careful, we can use that extra
information to light our way. Where primRec takes a constant type parameter,
NatInd takes a function P : Nat → �. If we take P x � Nat → Nat, we
get the primRec situation. How might we use P ’s argument to our advantage?
Internally, Epigram doesn’t build plus : Nat → Nat → Nat but rather a proof

♦plus : ∀x , y :Nat ⇒ 〈plus x y : Nat〉

We can interpret 〈plus x y : Nat 〉 as the property of x and y that ‘plus x y is
a computable element of Nat’. This type is equipped with a constructor which
packs up values and a function which runs computations

n : Nat
return〈plus x y 〉 n : 〈plus x y : Nat 〉

c : 〈plus x y : Nat〉
call〈plus x y 〉 c : Nat

6 If I had chosen a first-order recursion, there would have been as few as four, but that
would presume to fix the second argument through the course of the recursion.

Epigram: Practical Programming with Dependent Types 141

such that
call〈plus x y 〉 (return〈plus x y 〉 n) � n

Given ♦plus, we may readily extract plus—apply and run!

plus � λx , y ⇒ call〈plus x y 〉 (♦plus x y) : Nat → Nat → Nat

Now, let’s build ♦plus as a proof by NatInd:

♦plus � NatInd (λx ⇒ ∀y :Nat ⇒ 〈plus x y : Nat 〉) mz ms
where mz : ∀y :Nat ⇒ 〈plus zero y : Nat 〉

ms : ∀x :Nat ⇒ (∀y :Nat ⇒ 〈plus x y : Nat 〉)
→ ∀y :Nat ⇒ 〈plus (suc x) y : Nat 〉

It’s not hard to see how to generate the left-hand sides of the subproblems
for each case—just read them off from their types! Likewise, it’s not hard to see
how to translate the right-hand sides we supplied into the proofs—pack them
up with return〈 · · · 〉 translate recursive calls via call〈 · · · 〉:

mz � λy ⇒ return〈plus zero y 〉 y
ms � λx ⇒ λxhyp ⇒ λy ⇒

return〈plus (suc x) y 〉 (suc (call〈plus x y 〉 (xhyp y)))

From this proof, you can read off both the high-level program and the its low-level
operational behaviour in terms of primitive recursion. And that’s basically how
Epigram works! Dependent types aren’t just the basis of the Epigram language—
the system uses them to organise even simply typed programming.

2.3 What Are Case and Rec?

In the plus we actually wrote, we didn’t use induction—we used case x and
rec x . These separate induction into its aspects of distinguishing constructors
and of justifying recursive calls. The keywords case and rec cannot stand alone,
but case e and rec e are meaningful whenever e belongs to a datatype—Epigram
constructs their meaning from the structure of that datatype.

In our example, x : Nat, and Epigram give us

case x : ∀P : Nat → � ⇒
(P zero) → (∀x ′ :Nat ⇒ P (suc x ′)) → P x

This is an induction principle instantiated at x with its inductive hypotheses
chopped off: it just says, ‘to do P with x , show how to do P with each of these
patterns’. The associated computational behaviour puts proof into practice:

(case zero) P mz ms � mz
(case (suc x)) P mz ms � ms x

There is nothing special about casex . When elaborating ⇐ e, it’s the type of
e which specifies how to split a problem into subproblems. If, as above, we take

P � λx ⇒ ∀y :Nat ⇒ 〈plus x y : Nat 〉

142 C. McBride

then the types of mz and ms give us the split we saw when we wrote the program.
What about rec x?

rec x : ∀P : Nat → � ⇒
(∀x :Nat ⇒ (memo x) P → P x) →
P x

This says ‘if you want to do P x , show how to do it given access to P for ev-
erything structurally smaller than x ’. This (memox) is another gadget generated
by Epigram from the structure of x ’s type—it uses the power of computation in
types to capture the notion of ‘structurally smaller’:

(memo zero) P � One
(memo (suc n)) P � (memo n) P ∧ P n

That is (memox)P is the type of a big tuple which memoizes P for everything
smaller than x . If we analyse x , the memo-structure computes,7 giving us the
trivial tuple for the zero case, but for (suc n), we gain access to P n. Let’s watch
the memo-structure unfolding in the inevitable Fibonacci example.

let
(

n : Nat
fib n : Nat

)
; fib n ⇐ rec n {

fib n ⇐ case n {
fib zero ⇒ zero
fib (suc n) ⇐ case n {
fib (suc zero) ⇒ suc zero

fib (suc (suc n)) ⇒ [] }}}
If you select the remaining shed, you will see that the memo structure in the

context has unfolded (modulo trivial algebra) to:

(memo n) (λx ⇒ 〈fib x : Nat 〉) ∧ 〈fib n : Nat〉 ∧ 〈fib (suc n) : Nat〉
which is just as well, as we want to fill in plus (fib n) (fib (suc n)).

At this stage, the approach is more important than the details. The point is
that programming with ⇐ imposes no fixed notion of case analysis or recursion.
Epigram does not have ‘pattern matching’. Instead, ⇐ admits whatever notion of
problem decomposition is specified by the type of the expression (the eliminator)
which follows it. The value of the eliminator gives the operational semantics to
the program built from the solutions to the subproblems.

Of course, Epigram equips every datatype with case and rec, giving us the
usual notions of constructor case analysis structural recursion. But we are free
to make our own eliminators, capturing more sophisticated analyses or more
powerful forms of recursion. By talking about patterns, dependent types give us
the opportunity to specify and implement new ways of programming.
7 Following a suggestion by Thierry Coquand, Eduardo Giménez shows how to sep-

arate induction into case and rec in [17]. He presents memo-structures inductively,
to justify the syntactic check employed by Coq’s Fix construct. The computational
version is mine [23]; its unfolding memo-structures give you a menu of recursive calls.

Epigram: Practical Programming with Dependent Types 143

2.4 Pause for Thought

Concretely, we have examined one datatype and two programs. Slightly more
abstractly, we have seen the general shape of Epigram programs as decision
trees. Each node has a left-hand side, stating a programming problem p, and
a right-hand-side stating how to attack it. The leaves of the tree p ⇒ t ex-
plain directly what value to return. The internal nodes p ⇐ e use the type of
the eliminator e as a recipe for reducing the problem statement to subproblem
statements, and the value of e as a recipe for solving the whole problem, given
the solutions to the subproblems. Every datatype is equipped with eliminators
of form case x for constructor case analysis and rec x for structural recursion,
allowing us to construct obviously total programs in a pattern matching style.

However, the ⇐ construct is a more general tool than the case construct of
conventional languages. We answer Wadler’s question of how to combine data
abstraction with notions of pattern matching [38] by making notions of pattern
matching first-class values.

It’s reasonable to ask ‘Can’t I write ordinary programs in an ordinary way?
Must I build decision trees?’. I’m afraid the answer, for now, is ‘yes’, but it’s
just a matter of syntactic sugar. We’re used to prioritized lists of patterns with
a ‘take the first match’ semantics [28]. Lennart Augustsson showed us how to
compile these into trees of case-on-variables [3]. Programming in Epigram is
like being Augustsson’s compiler—you choose the tree, and it shows you the
patterns. The generalization lies in what may sit at the nodes. One could flatten
those regions of the tree with nonempty ⇐ case x nodes and use Augustsson’s
algorithm to recover a decision tree, leaving ⇐ explicit only at ‘peculiar’ nodes.

Of course, this still leaves us with explicit ⇐ rec x supporting structural
recursion. Can we get rid of that? There are various methods of spotting safe
recursive calls [17]; some even extend to tracking guardedness through mutual
definitions [1]. We could use these to infer obvious appeals to rec, leaving only
sophisticated recursions explicit. Again, it’s a question of work. Personally, I
want to write functions which are seen to be total.

Some might complain ‘What’s the point of a programming language that isn’t
Turing complete?’, but I ask in return, ‘Do you demand compulsory ignorance
of totality?’. Let’s guarantee totality explicitly whenever we can [37]. It’s also
possible, contrary to popular nonsense, to have dependent types and general
recursive programs, preserving decidable typechecking: the cheapest way to do
this is to work under an assumed eliminator with type

∀P :� ⇒(P → P) → P

to which only the run time system gives a computational behaviour; a less drastic
way is to treat general recursion as an impure monadic effect.

But in any case, you might be surprised how little you need general recursion.
Dependent types make more programs structurally recursive, because dependent
types have more structure. Inductive families with inductive indices support
recursion on the data itself and recursion on the indices. For example, first-
order unification [36] becomes structurally recursive when you index terms by

144 C. McBride

the number of variables over which they are constructed—solving a variable may
blow up the terms, but it decreases this index [25].

2.5 Some Familiar Datatypes

Just in time for the first set of exercises, let’s declare some standard equipment.
We shall need Bool, which can be declared like so:

data Bool : � where true, false : Bool

The standard Maybe type constructor is also useful:

data

(
X : �

Maybe X : �

)
where

(
nothing : Maybe X

)
;

(
x : X

just x : Maybe X

)
Note that I didn’t declare X in the rules for nothing and just. The hypotheses

of a rule scope only over its conclusion, so it’s not coming from the Maybe rule.
Rather, in each rule Epigram can tell from the way X is used that it must be a
type, and it silently generalizes the constructors, just the way the Hindley-Milner
system generalizes definitions.

It’s the natural deduction notation which triggers this generalization. We
were able to define Bool without it because there was nothing to generalize.
Without the rule to ‘catch’ the X , plain

nothing : Maybe X

wouldn’t exactly be an error. The out-of-scope X is waiting to be explained by
some prior definition: the nothing constructor would then be specific to that X .

Rule-induced generalization is also happening here, for polymorphic lists:

data
(

X : �
List X : �

)
where

(
nil : List X

)
;

(
x : X ; xs : List X
cons x xs : List X

)
We also need the binary trees with N -labelled nodes and L-labelled leaves.

data

(
N ,L : �

Tree N L : �

)
where

(
l : L

leaf l : Tree N L

)
;

(
n : N ; s , t : Tree N L
node n s t : Tree N L

)

2.6 Exercises: Structural Merge-Sort

To get used to the system, and to programming with structural recursion, try
these exercises, which only involve the simple types above

Exercise 1 (le). Define the ‘less-or-equal’ test:

let

(
x , y : Nat

le x y : Bool

)
Does it matter which argument you do rec on?

Epigram: Practical Programming with Dependent Types 145

Exercise 2 (cond). Define the conditional expression:

let
(

b : Bool ; then, else : T
cond b then else : T

)
Exercise 3 (merge). Use the above to define the function which merges two
lists, presumed already sorted into increasing order, into one sorted list contain-
ing the elements from both.

let

(
xs, ys : List Nat

merge xs ys : List Nat

)

Is this function structurally recursive on just one of its arguments? Nested recs
combine lexicographically.

Exercise 4 (flatten). Use merge to implement a function flattening a tree
which may have numbers at the leaves, to produce a sorted list of those numbers.
Ignore the node labels.

let

(
t : Tree N (Maybe Nat)

flatten t : List Nat

)

We can have a structurally recursive O(n log n) sorting algorithm if we can
share out the elements of a list into a balanced tree, then flatten it.

Exercise 5 (insert). Implement the insertion of a number into a tree:

let

(
n : Nat ; t : Tree Bool (Maybe Nat)
insert n t : Tree Bool (Maybe Nat)

)

Maintain this balancing invariant throughout: in (node true s t), s and t contain
equally many numbers, whilst in (node false s t), s contains exactly one more
number than t.

Exercise 6 (share, sort). Implement

let

(
ns : List Nat

share ns : Tree Bool (Maybe Nat)

)

let
(

ns : List Nat
sort ns : List Nat

)
so that sort sorts its input in O(n log n) time.

146 C. McBride

3 Vectors and Finite Sets

Moving on to dependent data structures now, let’s take a closer look at Vec:

data
(

n : Nat ; X : �
Vec n X : �

)
where

(
vnil : Vec zero X

)
(

x : X ; xs : Vec n X
vcons x xs : Vec (suc n) X

)

The generalization mechanism ensures that all the previously undeclared
variables arising inside each deduction rule are silently quantified in the resulting
type, with the implicit ∀ quantifier. Written out in full, we have declared

data Vec : Nat → � → �
where vnil : ∀ X :� ⇒Vec zero X

vcons : ∀ X :� ⇒∀ n :Nat ⇒X → Vec n X → Vec (suc n) X

On usage, Epigram tries to infer arguments for expressions with implicitly
quantified types, just the way the Hindley-Milner system specializes polymor-
phic things—by solving the equational constraints which arise in typechecking.
However, Epigram needs and supports a ‘manual override’: the postfix operator
inhibits inference and makes an implicit function explicit, so

vnil : ∀X :� ⇒Vec zero X
vnil Nat : Vec zero Nat

To save space, I often write overridden arguments as subscripts—eg., vnilNat.
Given this definition, let’s start to write some simple programs:

let

(
ys : Vec (suc m) Y

vhead ys : Y

)
; vhead ys [<= case ys]

What happens when we elaborate? Well, consider which constructors can pos-
sibly have made ys . Certainly not vnil, unless zero = suc n. We just get a vcons
case—the one case we want, for ‘head’ and ‘tail’:

let

(
ys : Vec (suc m) Y

vhead ys : Y

)
; vhead ys ⇐ case ys {

vhead (vcons y ys) ⇒ y }

let

(
ys : Vec (suc m) Y
vtail ys : Vec m Y

)
; vtail ys ⇐ case ys {

vtail (vcons y ys) ⇒ ys }

In the latter, not only do we get that it’s vcons as opposed to vnil: it’s the
particular vcons which extends vectors of the length we need. What’s going on?

Epigram: Practical Programming with Dependent Types 147

Much as Thierry Coquand proposed in [13], Epigram is unifying the scrutinee
of the case with the possible constructor patterns, in both term and type:

ys : Vec (suc m) Y unifier
vnilX : Vec zero X impossible

vconsX n x xs ′ : Vec (suc n) X X = Y , n = m, xs = vconsY m x xs ′

Only the vcons case survives—Epigram then tries to choose names for the pat-
tern variables which maintain a ‘family resemblance’ to the scrutinee, hence the
(vcons y ys) in the patterns.

This unification doesn’t just rule cases in or out: it can also feed information
to type-level computations. Here’s how to append vectors:

let

(
xs : Vec m X ; ys : Vec n X

vappendm xs ys : Vec (plus m n) X

)

vappendm xs ys ⇐ rec xs {
vappendm xs ys ⇐ case xs {
vappendzero vnil ys ⇒ ys
vappend(suc m) (vcons x xs) ys ⇒ vcons x (vappendm xs ys) }}

I’ve overridden the length arguments just to show what’s happening—you
can leave them implicit if you like. The point is that by looking at the first
vector, we learn about its length. This lets plus compute exactly as we need
for ys : Vec (plus zero n) X in the vnil case. For vcons, the return type is
Vec (plus (suc m) n) X � Vec (suc (plus m n)) X , which is what we supply.

3.1 Finite Sets

Let’s examine the consequences of dependent case analysis for a different family:

data
(

n : Nat
Fin n : �

)
where

(
fz : Fin (suc n)

)
;

(
i : Fin n

fs i : Fin (suc n)

)

What happens when we elaborate this?

let

(
i : Fin zero

magic i : X

)
; magic i [<= case i]

You’ve probably guessed, but let’s just check:

i : Fin zero unifier
fzn : Fin (suc n) impossible

fsn j : Fin (suc n) impossible

So the finished product is just magic i ⇐ case i

148 C. McBride

The idea is that Fin n is an enumeration type containing n values. Let’s
tabulate the first few members of the family, just to see what’s going on. (I’ll
show the implicit arguments as subscripts, but write in decimal to save space.)

Fin 0 Fin 1 Fin 2 Fin 3 Fin 4 · · ·
fz0 fz1 fz2 fz3 · · ·

fs1 fz0 fs2 fz1 fs3 fz2
. . .

fs2 (fs1 fz0) fs3 (fs2 fz1)
. . .

fs3 (fs2 (fs1 fz0))
. . .
. . .

Fin zero is empty, and each Fin (suc n) is made by embedding the n ‘old’
elements of Fin n, using fsn , and adding a ‘new’ element fzn . Fin n provides a
representation of numbers bounded by n, which can be used as ‘array subscripts’:

let

(
xs : Vec n X ; i : Fin n

vproj xs i : X

)
; vproj xs i ⇐ rec xs {

vproj xs i ⇐ case xs {
vproj vnil i ⇐ case i
vproj (vcons x xs) i ⇐ case i {
vproj (vcons x xs) fz ⇒ x
vproj (vcons x xs) (fs i)
⇒ vproj xs i }}}

We need not fear projection from vnil, for we can dismiss i : Fin zero, as a
harmless fiction. Of course, we could have analysed the arguments the other way
around:

vproj xs i ⇐ rec xs {
vproj xs i ⇐ case i {
vproj xs fz ⇐ case xs {
vproj (vcons x xs) fz ⇒ x }

vproj xs (fs i) ⇐ case xs {
vproj (vcons x xs) (fs i) ⇒ vproj xs i }}}

Here, inspecting i forces n to be non-zero in each case, so xs can only be a vcons.
The same result is achieved either way, but in both definitions, we rely on the
impact the first case analysis has on the possibilities for the second. It may seem
a tautology that dependent case analyses are not independent, but its impact is
profound. We should certainly ask whether the traditional case expression, only
expressing the patterns of its scrutinee, is as appropriate as it was in the past.

3.2 Refining Programming Problems

Our unification tables give some intuition to what is happening with case anal-
ysis. In Thierry Coquand’s presentation of dependent pattern matching [13],

Epigram: Practical Programming with Dependent Types 149

constructor case analysis is hard-wired and unification is built into the typing
rules. In Epigram, we have the more generic notion of refining a programming
problem by an eliminator, ⇐ e. If we take a closer look at the elaboration of this
construct, we’ll see how unification arises and is handled inside the type theory.
I’ll maintain both the general case and the vtail example side by side.

As we saw with plus, when we say8

let
(

Γ
f Γ : R

)
let

(
ys : Vec (suc m) Y
vtail ys : Vec m Y

)

Epigram initiates the development of a proof

♦f : ∀Γ ⇒ 〈 f Γ : R 〉 ♦vtail : ∀m :Nat; Y :�; ys :Vec (suc m) Y
⇒ 〈vtailm Y ys : Vec m Y 〉

The general form of a subproblem in this development is

♦fsub : ∀Δ ⇒ 〈 f �p : T 〉 ♦vtail : ∀m :Nat; Y :�; ys :Vec (suc m) Y
⇒ 〈vtailm Y ys : Vec m Y 〉

where �p are patterns—expressions over the variables in Δ. In the example, I’ve
chosen the initial patterns given by vtails formal parameters. Note that patterns
in Epigram are not a special subclass of expression. Now let’s proceed

f �p ⇐ e vtail ys ⇐ case ys

e : ∀ P : ∀Θ ⇒�
m1 : ∀Δ1 ⇒P �s1

...
mn : ∀Δn ⇒P �sn

⇒ P �t

case ys : ∀ P : ∀n; X ; xs :Vec n X ⇒�
m1 : ∀ X :� ⇒ P zero X vnil
m2 : ∀ X :�; n :Nat

x :X ; xs :Vec n X
⇒ P (suc n) X (vcons x xs)

⇒ P (suc m) Y ys

We call P the motive—it says what we gain from the elimination. In particular,
we’ll have a proof of P for the �t. The mi are the methods by which the motive
is to be achieved for each �si. James McKinna taught me to choose this motive:

P � λΘ ⇒
∀Δ ⇒ Θ=�t →
〈 f �p : T 〉

P � λn; X ; xs ⇒
∀m :Nat; Y :�; ys :Vec (suc m) Y
⇒ n=(suc m) → X =Y → xs=ys →
〈vtailm Y ys : Vec m Y 〉

This is just Henry Ford’s old joke. Our motive is to produce a proof of
∀Δ ⇒ 〈 f �p : T 〉, for ‘any Θ we like as long as it’s �t ’—the �t are the only Θ we
keep in stock. For our example, that means ‘any vector you like as long as it’s
8 I write Greek capitals for sequences of variables with type assignments in binders

and also for their unannotated counterparts as argument sequences.

150 C. McBride

nonempty and its elements are from Y ’. This = is heterogeneous equality,9

which allows any elements of arbitrary types to be proclaimed equal. Its one
constructor, refl, says that a thing is equal to itself.

s : S ; t : T
s=t : � refl : t=t

Above, the types of xs and ys are different, but they will unify if we can solve
the prior equations. Hypothetical equations don’t change the internal rules by
which the typechecker compares types—this is lucky, as hypotheses can lie.

If we can construct the methods, mi, then we’re done:

♦fsub � λΔ ⇒ e P m1 . . . mn

Δ refl . . . refl
: ∀Δ ⇒ 〈 f �p : T 〉

♦vtail � λm; Y ; ys ⇒ (case ys) P m1 m2

m Y ys refl refl refl
: ∀m :Nat; Y :�; ys :Vec (suc m) Y

⇒ 〈vtailm Y ys : Vec m Y 〉

But what are the methods? We must find, for each i

mi : ∀Δi; Δ ⇒ �si=�t → 〈 f �p : T 〉
In our example, we need

m1 : ∀ X ; m ; Y ; ys :Vec (suc m) Y ⇒
zero=(suc m) → X =Y → vnil=ys →
〈vtailm Y ys : Vec m Y 〉

m2 : ∀ X ; n; x ; xs :Vec n X ; m; Y ; xs :Vec (suc m) Y ⇒
(suc n)=(suc m) → X =Y → (vcons x xs)=ys →
〈vtailm Y ys : Vec m Y 〉

Look at the equations! They express exactly the unification problems for case
analysis which we tabulated informally. Now to solve them: the rules of first-order
unification for data constructors—see figure 1—are derivable in UTT. Each rule
(read backwards) simplifies a problem with an equational hypothesis. We apply
these simplifications to the method types. The conflict and cycle rules dispose
of ‘impossible case’ subproblems. Meanwhile, the substitution rule instantiates
pattern variables. In general, the equations �si=�t will be reduced as far as possible
by first-order unification, and either the subproblem will be dismissed, or it will
yield some substitution, instantiating the patterns �p.

In our example, the vnil case goes by conflict, and the vcons case becomes:

∀ Y ; m; x :Y ; xs :Vec Y m ⇒ 〈vtailY m (vcons x xs) : Vec Y m 〉
After ‘cosmetic renaming’ gives x and xs names more like the original ys , we get

vtail (vcons y ys) []

9 Also known as ‘John Major’ equality [23].

Epigram: Practical Programming with Dependent Types 151

deletion P →
x=x → P

conflict chalk�s=cheese�t → P

injectivity (�s=�t → P) →
chalk�s=chalk�t → P

substitution P t →
x=t → P x

x , t : T ; x 	∈ FV (t)

cycle x=t → P x constructor-guarded in t

Fig. 1. derivable unification rule schemes

To summarize, elaboration of ⇐ e proceeds as follows:

(1) choose a motive with equational constraints;
(2) simplify the constraints in the methods by first-order unification;
(3) leave the residual methods as the subproblems to be solved by subprograms.

In the presence of defined functions and higher types, unification problems
won’t always be susceptible to first-order unification, but Epigram will make
what progress it can and leave the remaining equations unsolved in the hypothe-
ses of subproblems—later analyses may reduce them to a soluble form. Moreover,
there is no reason in principle why we should not consider a constraint-solving
procedure which can be customized by user-supplied rules.

3.3 Reflection on Inspection

We’re not used to thinking about what functions really tell us, because simple
types don’t say much about values, statically. For example, we could write

let
(

n : Nat
nonzero n : Bool

)
; nonzero n ⇐ case n {

nonzero zero ⇒ false
nonzero (suc n) ⇒ true }

but suppose we have xs : Vec n X —what do we learn by testing nonzero n?
All we get is a Bool, with no direct implications for our understanding of n or
xs. We are in no better position to apply vtail to xs after inspecting this Bool
than before. Instead, if we do case analysis on n, we learn what n is statically
as well as dynamically, and in the suc case we can apply vtail to xs .

Of course, we could think of writing a preVtail function which operates on
any vector but requires a precondition, like

let

⎛⎜⎝xs : Vec n X ; q : nonzero n=true

preVtail xs q : Vec [] X

⎞⎟⎠

152 C. McBride

I’m not quite sure what to write as the length of the returned vector, so I’ve left
a shed: perhaps it needs some kind of predecessor function with a precondition.
If we have ys : Vec (sucm)Y , then preVtailys refl will be well typed. We could
even use this function with a more informative conditional expression:

condInfo : ∀P :�; b :Bool ⇒ (b=true → P) → (b=false → P) → P

However, this way of working is clearly troublesome.
Moreover, given a nonempty vector xs, there is more than just a stylistic

difference between decomposing it with vhead and vtail and decomposing it
with (case xs)—the destructor functions give us an element and a shorter vec-
tor; the case analysis tells us that xs is the vcons of them, and if any types
depend on xs, that might just be important. Again, we can construct a proof of
xs=vcons (vhead xs) (vtail xs), but this is much harder to work with.

In the main, selectors-and-destructors are poor tools for working with data
on which types depend. We really need forms of inspection which yield static
information. This is a new issue, so there’s no good reason to believe that the
old design choices remain appropriate. We need to think carefully about how to
reflect data’s new rôle as evidence.

3.4 Vectorized Applicative Programming

Now that we’ve seen how dependent case analysis is elaborated, let’s do some
more work with it. The next example shows a key difference between Epigram’s
implicit syntax and parametric polymorphism. The operation

let
(

x : X
vec x : Vec n X

)
makes a vector of copies of its argument. For any given usage of vec, the intended
type determined the length, but how are we to define vec? We shall need to work
by recursion on the intended length, hence we shall need to make this explicit
at definition time. The following declaration achieves this:

let
(

n : Nat ; x : X
vecn x : Vec n X

)
; vecn x ⇐ rec n {

vecn x ⇐ case n {
veczero x ⇒ vnil
vec(suc n) x ⇒ vcons x (vecn x) }}

Note that in vec’s type signature, I explicitly declare n first, thus making it the
first implicit argument: otherwise, X might happen to come first. By the way,
we don’t have to override the argument in the recursive call vecn x—it’s got
to be a Vec n X —but it would perhaps be a little disconcerting to omit the n,
especially as it’s the key to vec’s structural recursion.

Epigram: Practical Programming with Dependent Types 153

The following operation—vectorized application—turns out to be quite handy.

let

(
fs : Vec n (S → T) ; ss : Vec n S

va fs ss : Vec n T

)
va fs ss ⇐ rec fs {
va fs ss ⇐ case fs {
va vnil ss ⇐ case ss {
va vnil vnil ⇒ vnil }

va (vcons f fs) ss ⇐ case ss {
va (vcons f fs) (vcons s ss) ⇒ vcons (f s) (va fs ss) }}}

As it happens, the combination of vec and va equip us with ‘vectorized ap-
plicative programming’, with vec embedding the constants, and va providing
application. Transposition is my favourite example of this:

let

(
xij : Vec i (Vec j X)

transpose xij : Vec j (Vec i X)

)
transpose xij ⇐ rec xij {
transpose xij ⇐ case xij {
transpose vnil ⇒ vec vnil
transpose (vcons xj xij) ⇒ va (va (vec vcons) xj) (transpose xij) }}

3.5 Exercises: Matrix Manipulation

Exercise 7 (vmap,vZipWith). Show how vec and va can be used to generate
the vector analogues of Haskell’s map, zipWith, and the rest of the family. (A
glance at [16] may help.)

Exercise 8 (vdot). Implement vdot, the scalar product of two vectors of Nats.

Now, how about matrices? Recall the vector-of-columns representation:

let
(

rows , cols : Nat
Matrix rows cols : �

)
Matrix rows cols ⇒ Vec cols (Vec rows Nat)

Exercise 9 (zero, identity). How would you compute the zero matrix of a
given size? Also implement a function to compute any identity matrix.

Exercise 10 (matrix by vector). Implement matrix-times-vector multiplica-
tion. (ie, interpret a Matrix m n as a linear map Vec n Nat → Vec m Nat.)

Exercise 11 (matrix by matrix). Implement matrix-times-matrix multipli-
cation. (ie, implement composition of linear maps.)

Exercise 12 (monad). (Mainly for Haskellers.) It turns out that for each n,
Vec n is a monad, with vec playing the part of return. What should the corre-
sponding notion of join do? What plays the part of ap?

154 C. McBride

3.6 Exercises: Finite Sets

Exercise 13 (fmax, fweak). Implement fmax (each nonempty set’s maximum
value) and fweak (the function preserving fz and fs, incrementing the index).

let

(
fmaxn : Fin (suc n)

)
let

(
i : Fin n

fweak i : Fin (suc n)

)

You should find that fmax and fweak partition the finite sets, just as fz and fs
do. Imagine how we might pretend they’re an alternative set of constructors. . .

Exercise 14 (vtab). Implement vtab, the inverse of vproj, tabulating a func-
tion over finite sets as a vector.

let

(
n : Nat ; f : Fin n → X

vtabn f : Vec n X

)

Note that vtab and vproj offer alternative definitions of matrix operations.

Exercise 15 (OPF,opf). Devise an inductive family, OPF m n which gives
a unique first-order representation of exactly the order-preserving functions in
Fin m → Fin n. Give your family a semantics by implementing

let

(
f : OPF m n ; i : Fin m

opf f i : Fin n

)

Exercise 16 (iOPF, cOPF). Implement identity and composition:

let
(

iOPFn : OPF n n

)
let

(
f OPF m n ; g OPF l m
cOPF f g : OPF l n

)

Which laws should relate iOPF, cOPF and opf?

4 Representing Syntax

The Fin family can represent de Bruijn indices in nameless expressions [14]. As
Françoise Bellegarde and James Hook observed in [6], and Richard Bird and
Ross Paterson were able to implement in [9], you can do this in Haskell, up to a
point—here are the λ-terms with free variables given by v:

data Term v = Var v
| App (Term v) (Term v)
| Lda (Term (Maybe v))

Under a Lda, we use (Maybe v) as the variable set for the body, with Nothing
being the new free variable and Just embedding the old free variables. Renaming
is just fmap, and substitution is just the monadic ‘bind’ operator >>=.

Epigram: Practical Programming with Dependent Types 155

However, Term is a bit too polymorphic. We can’t see the finiteness of the
variable context over which a term is constructed. In Epigram, we can take the
number of free variables to be a number n, and choose variables from Fin n.

data
(

n : Nat
Tm n : �

)
where

(
i : Fin n

var i : Tm n

)
;

(
f , s : Tm n

app f s : Tm n

)
;

(
t : Tm (suc n)
lda t : Tm n

)

The n in Term n indicates the number of variables available for term formation:
we can explain how to λ-lift a term, by abstracting over all the available variables:

let
(

t : Tm n
ldaLiftn t : Tm zero

)
; ldaLiftn t ⇐ rec n {

ldaLiftn t ⇐ case n {
ldaLiftzero t ⇒ t
ldaLift(suc n) t ⇒ ldaLiftn (lda t) }}

Not so long ago, we were quite excited about the power of non-uniform datatypes
to capture useful structural invariants. Scoped de Bruijn terms gave a good
example, but most of the others proved more awkward even than the ‘fake’
dependent types you can cook up using type classes [24].

Real dependent types achieve more with less fuss. This is mainly due to the
flexibility of inductive families. For example, if you wanted to add ‘weakening’ to
delay explicitly the shifting of a term as you push it under a binder—in Epigram,
but not Haskell or Cayenne, you could add the constructor(

t : Tm n
weak t : Tm (suc n)

)

4.1 Exercises: Renaming and Substitution

If Fin m is a variable set, then some ρ : Fin m → Fin n is a renaming. If we want
to apply a renaming to a term, we need to be able to push it under a lda. Hence
we need to weaken the renaming, mapping the new source variable to the new
target variable, and renaming as before on the old variables.10

let

(
ρ : Fin m → Fin n ; i : Fin (suc m)

wren ρ i : Fin (suc n)

)
wren ρ i ⇐ case i {
wren ρ fz ⇒ fz
wren ρ (fs i) ⇒ fs (ρ i) }

You get to finish the development.

10 Categorists! Note wren makes suc a functor in the category of Fin-functions. What
other structure can you sniff out here?

156 C. McBride

Exercise 17 (ren). Use wren to help you implement the renaming traversal

let

(
ρ : Fin m → Fin n ; t : Tm m

ren ρ t : Tm n

)

Now repeat the pattern for substitutions—functions from variables to terms.

Exercise 18 (wsub, sub). Develop weakening for substitutions, then use it to
go under lda in the traversal:

let

(
σ : Fin m → Tm n ; i : Fin (suc m)

wsub σ i : Tm (suc n)

)

let
(

σ : Fin m → Tm n ; t : Tm m
sub σ t : Tm n

)
Exercise 19 (For the brave). Refactor this development, abstracting the
weakening-then-traversal pattern. If you need a hint, see chapter 7 of [23].

4.2 Stop the World I Want to Get Off! (A First Try at Typed
Syntax)

We’ve seen untyped λ-calculus: let’s look at how to enforce stronger invariants, by
representing a typed λ-calculus. Recall the rules of the simply typed λ-calculus:

Γ ; x ∈σ; Γ ′ � x ∈ σ
Γ ; x ∈σ � t ∈ τ

Γ � λx ∈σ. t ∈ σ⊃τ
Γ � f ∈ σ⊃τ Γ � s ∈ σ

Γ � f s ∈ τ

Well-typed terms are defined with respect to a context and a type. Let’s just
turn the rules into data! I add a base type, to make things more concrete.

data

(
SType : �

)
where

(
sNat : SType

)
;

(
σ, τ : SType

sFun σ τ : SType

)

We could use Vec for contexts, but I prefer contexts which grow on the right.

data
(

n : Nat
SCtxt n : �

)
where

(
empty : SCtxt zero

)
(

Γ : SCtxt n ; σ : SType
bind Γ σ : SCtxt (suc n)

)

Now, assuming we have a projection function sproj, defined in terms of SCtxt
and Fin the way we defined vproj, we can just turn the inference rules of the
typing relation into constructors:

Epigram: Practical Programming with Dependent Types 157

data
(

Γ : SCtxt n ; τ : SType
STm Γ τ : �

)
where

(
i : Fin n

svar i : STm Γ (sproj Γ i)

)
;

(
t : STm (bind Γ σ) τ

slda t : STm Γ (sFun σ τ)

)
(

f : STm Γ (sFun σ τ) ; s : STm Γ σ
sapp f s : STm Γ τ

)
This is a precise definition of the simply-typed λ-terms. But is it any good? Well,
just try writing programs with it.

How would you implement renaming? As before, we could represent a re-
naming as a function ρ : Fin m → Fin n. Can we rename a term in STm Γ τ to
get a STm Δ τ , where Γ : SCtxt m and Δ : SCtxt n? Here comes the crunch:

· · · renn Γ Δ ρ (svar i) ⇒ svar (ρ i)

The problem is that svar i : STm Γ (sproj Γ i), so we want a STm Δ (sproj Γ i)
on the right, but we’ve got a STm Δ (sproj Δ (ρ i)). We need to know that ρ is
type-preserving! Our choice of variable representation prevents us from building
this into the type of ρ. We are forced to state an extra condition:

∀i :Fin m ⇒sproj Γ i=sproj Δ (ρ i)

We’ll need to repair our program by rewriting with this proof.11 But it’s worse
than that! When we move under a slda, we’ll lift the renaming, so we’ll need a
different property:

∀i ′ :Fin (suc m) ⇒sproj (bind Γ σ) i ′=sproj (bind Δ σ) (lift ρ i ′)

This follows from the previous property, but it takes a little effort. My program
has just filled up with ghastly theorem-proving. Don’t dependent types make life
a nightmare? Stop the world I want to get off!

If you’re not afraid of hard work, you can carry on and make this program
work. I think discretion is the better part of valour—let’s solve the problem in-
stead. We’re working with typed terms but untyped variables, and our function
which gives types to variables does not connect the variable clearly to the con-
text. For all we know, sproj always returns sNat! No wonder we need ‘logical
superstructure’ to recover the information we’ve thrown away.

4.3 Dependent Types to the Rescue

Instead of using a program to assign types to variables and then reasoning about
it, let’s just have typed variables, as Thorsten Altenkirch and Bernhard Reus [2].

data
(

Γ : SCtxt n ; τ : SType
SVar Γ τ : �

)
where

(
vz : SVar (bind Γ σ) σ

)
;

(
i : SVar Γ τ

vs i : SVar (bind Γ σ) τ

)
11 I shan’t show how to do this, as we shall shortly avoid the problem.

158 C. McBride

This family strongly resembles Fin. Its constructors target only nonempty con-
texts; it has one constructor which references the ‘newest’ variable; the other
constructor embeds the ‘older’ variables. You may also recognize this family as
an inductive definition of context membership. Being a variable means being a
member of the context. Fin just gives a data representation for variables without
their meaning. Now we can replace our awkward svar with(

i : SVar Γ τ
svar i : STm Γ τ

)
A renaming from Γ to Δ becomes an element of

∀τ :SType ⇒ SVar Γ τ → SVar Δ τ

Bad design makes for hard work, whether you’re making can-openers, doing
mathematics or writing programs. It’s often tempting to imagine that once we’ve
made our representation of data tight enough to rule out meaningless values, our
job is done and things should just work out. This experience teaches us that more
is required—we should use types to give meaningful values their meaning. Fin
contains the right data, but SVar actually explains it.

Exercise 20. Construct simultaneous renaming and simultaneous substitution
for this revised definition of STm. Just lift the pattern from the untyped version!

4.4 Is Looking Seeing?

It’s one thing to define data structures which enforce invariants and to write
programs which respect invariants, but how can we establish invariants?

We’ve seen how to use a finite set to index a vector, enforcing the appropriate
bounds, but what if we only have a number, sent to us from the outside world?
We’ve seen how to write down the STms, but what if we’ve read in a program
from a file? How do we compute its type-safe representation if it has one?

If we want to index a Vec n X by m : Nat, it’s no good testing the Boolean
m < n . The value true or false won’t explain whether m can be represented by
some i : Fin n. If we have a f : STm Γ (sFun σ τ) and some a : STm Γ α, we could
check Boolean equality σ == α, but true doesn’t make α into σ, so we can’t
construct sapp f a.

Similar issues show up in the ‘Scrap Your Boilerplate’ library of dynamically
typed traversal operators by Ralf Lämmel and Simon Peyton Jones [18]. The
whole thing rests on a ‘type safe cast’ operator, comparing types at run time:

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x = r

where
r = if typeOf x == typeOf (get r)

then Just (unsafeCoerce x)
else Nothing

Epigram: Practical Programming with Dependent Types 159

get :: Maybe a -> a
get x = undefined

This program does not, of itself, make sense. The best we can say is that
we can make sense of it, provided typeOf has been correctly implemented.
The machine looks at the types but does not see when they are the same,
hence the unsafeCoerce. The significance of the test is obscure, so blind obe-
dience is necessary. Of course, I trust them, but I think they could aspire for
better.

The trouble is that representing the result of a computation is not enough:
you need to know the meaning of the computation if you want to justify its
consequences. A Boolean is a bit uninformative. To see when we look, we need
a new way of looking. Take the vector indexing example. We can explain which
number is represented by a given i : Fin n by forgetting its bound:

let
(

i : Fin n
fFin i : Nat

)
; fFin i ⇐ rec i {

fFin i ⇐ case i {
fFin fz ⇒ zero
fFin (fs i) ⇒ suc (fFin i) }}

Now, for a given n and m, m is either

– (fFin i) for some i : Fin n, or
– (plus n m ′) for some m ′ : Nat

Our types can talk about values—we can say that!

checkBound n m : ∀P : Nat → Nat → � ⇒
(∀n :Nat; i :Fin n ⇒ P n (fFin i)) →
(∀n, m ′ :Nat ⇒ P n (plus n m ′)) →
P n m

That’s to say: ‘whatever P you want to do with n and m , it’s enough to
explain P for n and (fFin i) and also for n and (plusn m ′)’. Or ‘you can match
n, m against the patterns, n, (fFin i) and n, (plus n m ′)’. I designed the above
type to look like a case principle, so that I can program with it. Note that I don’t
just get an element either of (Fin i) or of Nat from an anonymous informant; it
really is my very own n and m which get analysed—the type says so! If I have
checkBound, then I can check m like this:

let

(
xs : Vec n X ; m : Nat

mayProjn xs m : Maybe X

)
mayProjn xs m ⇐ checkBound n m {
mayProjn xs (fFin i) ⇒ just (vproj xs i)
mayProjn xs (plus n m ′) ⇒ nothing }

160 C. McBride

In one case, we get a bounded i , so we can apply bounds-safe projection.
In the other, we clearly fail. Moreover, if the return type were to depend on
m, that’s fine: not only do we see what m must be, Epigram sees it too! But
checkBound has quite a complicated higher-order type. Do I really expect you
to dump good old m < n for some bizarre functional? Of course I don’t: I’ll now
explain the straightforward first-order way to construct checkBound.

4.5 A Funny Way of Seeing Things

Constructor case analysis is the normal way of seeing things. Suppose I have
a funny way of seeing things. We know that ⇐ doesn’t care—a ‘way of seeing
things’ is expressed by a type and interpreted as a way of decomposing a pro-
gramming problem into zero or more subproblems. But how do I establish that
my funny way of seeing at things makes sense?

Given n, m : Nat, we want to see m as either (fFin i) for some i : Fin n, or
else some (plus n m ′). We can write a predicate which characterizes the n and
m for which this is possible—it’s possible for the very patterns we want.12

data
(

n, m : Nat
BoundCheck n m : �

)
where

(
i : Fin n

inBound i : BoundCheck n (fFin i)

)
(

m ′ : Nat
outOfBound m ′ : BoundCheck n (plus n m ′)

)

A value bc : BoundCheckn m tells us something about n and m, and it’s just
n and m that we care about here—bc is just a means to this end. The eliminator
(case bc) expects a motive abstracting over n, m and bc, allowing us to inspect
bc also. If we restrict the motive to see only n and m, we get

λP :Nat → Nat → � ⇒ (case bc) (λ n ′; m ′; bc′ ⇒P n ′ m ′)
: ∀P : Nat → Nat → � ⇒

(∀n :Nat; i :Fin n ⇒ P n (fFin i)) →
(∀n, m ′ :Nat ⇒ P n (plus n m ′)) →
P n m

and that’s exactly the type of checkBoundnm. This construction on a predicate
is sufficiently useful that Epigram gives it a special name, (view bc). That’s to
say, the machine-generated eliminator which just looks at BoundCheck’s indices
in terms of its constructors. Logically, view gives a datatype family its relation
induction principle. But to use this ‘view’, we need bc : BoundCheckn m. That
is, we must show that every n and m are checkable in this way:

12 I forgot that I’m programming : of course, I mean ‘datatype family’.

Epigram: Practical Programming with Dependent Types 161

let
(

boundCheck n m : BoundCheck n m

)
boundCheck n m ⇐ rec n {
boundCheck n m ⇐ case n {
boundCheck zero m ⇒ outOfBound m
boundCheck (suc n) m ⇐ case m {
boundCheck (suc n) zero ⇒ inBound fz
boundCheck (suc n) (suc m) ⇐ view (boundCheck n m) {
boundCheck (suc n) (suc (fFin i)) ⇒ inBound (fs i)
boundCheck (suc n) (suc (plus n m ′)) ⇒ outOfBound m ′ }}}}

There’s no trouble using the view we’re trying to establish: the recursive call
is structural, but used in an eliminator rather than a return value. This func-
tion works much the way subtraction works. The only difference is that it has a
type which establishes a connection between the output to the function and its
inputs, shown directly in the patterns! We may now take

checkBound n m � view (boundCheck n m)

4.6 Patterns Forget; Matching Is Remembering

What has ‘pattern matching’ become? In general, a pattern is a forgetful op-
eration. Constructors like zero and suc forget themselves—you can’t tell from
the type Nat, which constructor you’ve got. Case analysis remembers what con-
structors forget. And so it is with our funny patterns: the fFin function forgets
bounded whilst (plusn m ′) forgets by how much its output exceeds n. Our view
remembers what these patterns forget.

The difference between Epigram views and Phil Wadler’s views [38] is that
Epigram views cannot lie. Epigram views talk directly about the values being
inspected in terms of the forgetful operations which generate them. Wadler’s
views ascribe that informative significance to an independent value, whether or
not it’s justified. We shouldn’t criticize Wadler for this—dependent types can
see where simple types can only look. Of course, to work with dependent types,
we need to be able to see. If we want to generate values in types which enforce
strong invariants, we need to see that those invariants hold.

Exercise 21. Show that fmax and fweak cover Fin by constructing a view.

5 Well Typed Programs hich Don’t Go Wrong

Let’s have a larger example of derivable pattern matching—building simply-
typed terms in the STm family by typechecking ‘raw’ untyped terms from

W

162 C. McBride

data
(

n : Nat
RTm n : �

)
where

(
i : Fin n

rvar i : RTm n

)
;

(
f , s : RTm n

rapp f s : RTm n

)
(

σ : SType ; b : RTm (suc n)
rlda σ b : RTm n

)
Typechecking is a form of looking. It relies on two auxiliary forms of looking—

looking up a variable in the context, and checking that two types are the same.
Our svar constructor takes context-references expressed in terms of SVar, and
our sapp constructor really needs the domain of the function to be the same as
the type of the argument, so just looking is not enough. Let’s see.

An SVar is a context-reference; a Fin is merely a context-pointer. We can
clearly turn a reference into a pointer by forgetting what’s referred to:

let
(

Γ : SCtxt n ; i : SVar Γ τ
fV τ i : Fin n

)
; fV τ i ⇐ rec i {

fV τ i ⇐ case i {
fV τ vz ⇒ fz
fV τ (vs i) ⇒ fs (fV τ i) }}

Why is τ an explicit argument? Well, the point of writing this forgetful map
is to define a notion of pattern for finite sets which characterizes projection. We
need to see the information which the pattern throws away. Let’s establish the
view—it’s just a more informative vproj, telling us not only the projected thing,
but that it is indeed the projection we wanted.

data
(

Γ : SCtxt n ; i : Fin n
Find Γ i : �

)
where

(
i : SVar Γ τ

found τ i : Find Γ (fV τ i)

)

let
(

find Γ i : Find Γ i

)
find Γ i ⇐ rec Γ {
find Γ i ⇐ case i {
find Γ fz ⇐ case Γ {
find (bind Γ σ) fz ⇒ found σ vz }

find Γ (fs i) ⇐ case Γ {
find (bind Γ σ) (fs i) ⇐ view (find Γ i) {
find (bind Γ σ) (fs (fV τ i)) ⇒ found τ (vs i) }}}}

5.1 Term and Terror

We can follow the same recipe for typechecking as we did for context lookup.
Help me fill in the details:

Epigram: Practical Programming with Dependent Types 163

Exercise 22 (fTm). Implement the forgetful map:

let
(

Γ SCtxt n ; t : STm Γ τ
fTm τ t : RTm n

)
But not every raw term is the forgetful image of a well typed term. We’ll need

data
(

Γ : SCtxt n
TError Γ : �

)
where · · ·

let
(

Γ : SCtxt n ; e : TError Γ
fTError e : RTm n

)
Exercise 24 (TError, fTError). Fill out the definition of TError and implement
fTError. (This will be easy, once you’ve done the missing exercise. The TErrors
will jump out as we write the typechecker—they pack up the failure cases.)

Let’s start on the typechecking view. First, the checkability relation:

data
(

Γ : SCtxt n :r : RTm n
Check Γ r : �

)
where

(
t : STm Γ τ

good t : Check Γ (fTm τ t)

)
;

(
e : TError Γ

bad e : Check Γ (fTError e)

)
Next, let’s start on the proof of checkability—sorry, the typechecker:

let
(

check Γ r : Check Γ r

)
check Γ r ⇐ rec r {
check Γ r ⇐ case r {
check Γ (rvar i) ⇐ view (find Γ i) {
check Γ (rvar (fV τ i)) ⇒ good (svar i) }

check Γ (rapp f s) ⇐ view (check Γ f) {
check Γ (rapp (fTm φ f) s) ⇐ case φ {
check Γ (rapp (fTm sNat f) s) ⇒ bad []
check Γ (rapp (fTm (sFun σ τ) f) s) ⇐ view (check Γ s) {
check Γ (rapp (fTm (sFun σ τ) f) (fTm α s)) []

check Γ (rapp (fTm (sFun σ τ) f) (fTError e)) ⇒ bad [] }}
check Γ (rapp (fTError e) s) ⇒ bad [] }

check Γ (rlda σ t) ⇐ view (check (bind Γ σ) t) {
check Γ (rlda σ (fTm τ t)) ⇒ good (slda t)
check Γ (rlda σ (fTError e)) ⇒ bad [] }}}

The story so far: we used find to check variables; we used check recursively
to check the body of an rlda and packed up the successful outcome. Note that
we don’t need to write the types of the good terms—they’re implicit in STm.

164 C. McBride

We also got some way with application: checking the function; checking that
the function inhabits a function space; checking the argument. The only trouble
is that our function expects a σ and we’ve got an α. We need to see if they’re
the same: that’s the missing exercise.

Exercise 23. Develop an equality view for SType:

data

(
σ, τ : SType

Compare σ τ : �

)

where

(
same : Compare τ τ

)
;

(
σ′ : Diff σ

diff σ′ : Compare σ (fDiff σ σ′)

)

let

(
compare σ τ : Compare σ τ : �

)

You’ll need to define a representation of STypes which differ from a given σ and
a forgetful map fDiff which forgets this difference.

How to go about it? Wait and see. Let’s go back to application. . .

check Γ (rapp (fTm (sFun σ τ) f) (fTm α s)) ⇐ view (compare σ α) {
check Γ (rapp (fTm (sFun σ τ) f) (fTm σ s)) ⇒ good (sapp f s)
check Γ (rapp (fTm (sFun σ τ) f) (fTm (fDiff σ σ′) s)) ⇒ bad [] }

If we use your compare view, we can see directly that the types match in
one case and mismatch in the other. For the former, we can now return a well
typed application. The latter is definitely wrong.

We’ve done all the good cases, and we’re left with choosing inhabitants of
TError Γ for the bad cases. There’s no reason why you shouldn’t define TError Γ
to make this as easy as possible. Just pack up the information which is lying
around! For the case we’ve just seen, you could have:13(

σ′ : Diff σ ; f : STm Γ (sFun σ τ) ; s : STm Γ (fDiff σ σ′)
mismatchError σ′ f s : TError Γ

)

fTError (mismatchError σ′ f s) ⇒ rapp (fTm ? f) (fTm ? s)

This recipe gives one constructor for each bad case, and you don’t have any choice
about its declaration. There are two basic type errors—the above mismatch and
the application of a non-function. The remaining three bad cases just propagate
failure outwards: you get a type of located errors.

Of course, you’ll need to develop comparable first. To define Diff, just play
the same type-of-diagnostics game. Develop the equality test, much as you would

13 The ? means ‘please infer’—it’s often useful when writing forgetful maps. Why?

Epigram: Practical Programming with Dependent Types 165

with the Boolean version, but using the view recursively in order to see when
the sources and targets of two sFuns are the same. If you need a hint, see [27].

What have we achieved? We’ve written a typechecker which not only returns
some well typed term or error message, but, specifically, the well typed term
or error message which corresponds to its input by fTm or fTError. That
correspondance is directly expressed by a very high level derived form of pattern
matching: not rvar, rapp or rlda, but ‘well typed’ or ‘ill typed’.

5.2 A Typesafe and Total Interpreter

Once you have a well typed term, you can extract some operational benefit from
its well-typedness—you can execute it without run-time checks. This example
was inspired by Lennart Augustsson and Magnus Carlsson’s interpreter for terms
with a typing proof [5]. Epigram’s inductive families allow us a more direct
approach: we just write down a denotational semantics for well typed terms.
Firstly, we must interpret SType:

let
(

τ : SType
Value τ : �

)
; Value τ ⇐ rec τ {

Value τ ⇐ case τ {
Value sNat ⇒ Nat
Value (sFun σ τ) ⇒ Value σ → Value τ }}

Now we can explain how to interpret a context by an environment of values:

data
(

Γ : SCtxt n
Env Γ : �

)
where

(
eempty : Env empty

)
;

(
γ : Env Γ ; v : Value σ
ebind γ σ : Env (bind Γ σ)

)
Next, interpret variables by looking them up:

let

(
γ : Env Γ ; i : SVar Γ τ

evar γ i : Value τ

)
; evar γ i ⇐ rec i {

evar γ i ⇐ case i {
evar γ vz ⇐ case γ {
evar (ebind γ v) vz ⇒ v }

evar γ (vs i) ⇐ case γ {
evar (ebind γ v) (vs i) ⇒ evar γ i }}}

Finally, interpret the well typed terms:

let

(
γ : Env Γ ; t : STm Γ τ

eval γ t : Value τ

)
eval γ t ⇐ rec t {
eval γ t ⇐ case t {
eval γ (svar i) ⇒ evar γ i
eval γ (sapp f s) ⇒ eval γ f (eval γ s)
eval γ (slda t) ⇒ λv ⇒eval (ebind γ v) t }}

166 C. McBride

Exercise 25. Make an environment whose entries are the constructors for Nat,
together with some kind of iterator. Add two and two.

6 Epilogue

Well, we’ve learned to add two and two. It’s true that Epigram is currently little
more than a toy, but must it necessarily remain so? There is much work to do.

I hope I have shown that precise data structures can manipulated successfully
and in a highly articulate manner. You don’t have to be content with giving
orders to the computer and keeping your ideas to yourself. What has become
practical is a notion of program as effective explanation, rather than merely an
effective procedure. Upon what does this practicality depend?

– adapting the programming language to suit dependent types
Our conventional programming constructs are not well-suited either to cope
with or to capitalize on the richness of dependent data structures. We have
had to face up to the fact that inspecting one value can tell us more about
types and about other values. And so it should: at long last, testing makes a
difference! Moreover, the ability of types to talk about values gives us ready
access to a new, more articulate way of programming with the high-level
structure of values expressed directly as patterns.

– using type information earlier in the programming process
With so much structure—and computation—at the type level, keeping your-
self type correct is inevitably more difficult. But it isn’t necessary! Machines
can check types and run programs, so use them! Interactive programming
shortens the feedback loop, and it makes types a positive input to the pro-
gramming process, not just a means to police its output.

– changing the programs we choose to write
We shouldn’t expect dependently typed programming merely to extend the
functional canon with new programs which could not be typed before. In
order to exploit the power of dependent types to express and enforce stronger
invariants, we need a new style of programming which explicitly establishes
those invariants. We need to rework old programs, replacing uninformative
types with informative ones.

6.1 Related Work

Epigram’s elder siblings are DML [39] and Cayenne [4]. DML equips ML pro-
grams with types refined by linear integer constraints and equips the typechecker
with a constraint-solver. Correspondingly, many basic invariants, especially those
involving sizes and ranges, can be statically enforced—this significantly reduces
the overhead of run time checking [40]. Epigram has no specialist constraint-
solver for arithmetic, although such a thing is a possible and useful extension.
Epigram’s strength is in the diversity of its type-level language.

Cayenne is much more ambitious than DML and a lot closer to Epigram.
It’s notorious for its looping typechecker, although(contrary to popular miscon-

Epigram: Practical Programming with Dependent Types 167

ception)this is not an inevitable consequence of mixing dependent types with
general recursion—recursion is implemented via fixpoints, so even structurally
recursive programs can loop—you can always expand a fixpoint.

Cayenne’s main drawback is that it doesn’t support the kind of inductive
families which Epigram inherited from the Alf system [21,13]. It rules out those
in which constructors only target parts of a family, the way vnil makes empty
vectors and vcons makes nonempty vectors. This also rules out SVar, STm and
all of our ‘views’. All of these examples can be given a cumbersome encoding if
you are willing to work hard enough: I for one am not.

The Agda proof assistant [12], like Epigram, is very much in the spirit of
Alf, but it currently imposes the same restrictions on inductive definitions as
Cayenne and hence would struggle to support the programs in these notes—
this unfortunate situation is unlikely to continue. Meanwhile Coq [11] certainly
accepts the inductive definitions in this paper: it just has no practical support
for programming with them—there is no good reason for this to remain so.

In fact, the closest programming language to Epigram at time of writing
is Haskell, with ghc’s new ‘generalised algebraic data types’ [33]. These turn
out to be, more or less, inductive families! Of course, in order to preserve the
rigid separation of static types and dynamic terms, GADTs must be indexed
by type expressions. It becomes quite easy to express examples like the type-
safe interpreter, which exploit the invariants enforced by indexing. What is still
far from obvious is how to establish invariants for run time data, as we did
in our typechecker—this requires precisely the transfer of information from the
dynamic to the static which is still excluded.

6.2 What Is to Be Done?

We have only the very basic apparatus of dependently typed programming in
place at the moment. We certainly need some way to analyse the results of inter-
mediate computations in a way which reflects their significance for the existing
type and value information—I have studiously avoided this issue in these notes.
In [27], we propose a construct which adds the result of an intermediate compu-
tation to the collection of values being scrutinized on the left-hand side, at the
same time abstracting it from types. This is not yet implemented.

We shall certainly need coinductive data in order to develop interactive sys-
tems. Inspired by the success of monads in Haskell, we shall also need to in-
vestigate the enhanced potential for ‘categorical packaging’ of programming in
a language where the notion of category can be made abstract. And of course,
there are all the ‘modern conveniences’: infix operators, ad-hoc polymorphism,
generics, and so forth. These require design effort: the underlying expressivity is
available, but we need good choices for their high-level presentation.

Work has already begun on a compiler for Epigram [10]: we have barely
started to exploit our new wealth of static information for performance. We have
the benefit of a large total fragment, in which evaluation strategy is unimportant
and program transformation is no longer troubled by ⊥. The fact that partial
evaluation is already a fact of life for us must surely help also.

168 C. McBride

We need a library, but it’s not enough to import the standard presentation
of standard functionality. Our library must support the idioms of dependently
typed programming, which may well be different. Standardizing too early might
be a mistake: we need to explore the design space for standard equipment.

But the greatest potential for change is in the tools of program development.
Here, we have barely started. Refinement-style editing is great when you have a
plan, but often we don’t. We need to develop refactoring technology for Epigram,
so that we can sharpen our definitions as we learn from experiments. It’s seldom
straight away that we happen upon exactly the indexed data structure we need.

Moreover, we need editing facilities that reflect the idioms of programming.
Many data structures have a rationale behind them—they are intended to relate
to other data structures in particular ways and support particular operations. At
the moment we write none of this down. The well typed terms are supposed to be
a more carefully indexed version of the raw terms—we should have been able to
construct them explicitly as such. If only we could express our design principles
then we could follow them deliberately. Currently, we engineer coincidences,
dreaming up datatypes and operations as if from thin air.

But isn’t this just wishful thinking? I claim not. Dependent types, seen
through the Curry-Howard lens, can characterize types and programs in a way
which editing technology can exploit. We’ve already seen one class of logical prin-
ciple reified as a programming operation—the ⇐ construct. We’ve been applying
reasoning to the construction of programs on paper for years. We now have what
we need to do the same effectively on a computer: a high-level programming lan-
guage in which reasons and programs not merely coexist but coincide.

Acknowledgements

I’d like to thank the editors, Tarmo Uustalu and Varmo Vene, and the anonymous
referees, for their patience and guidance. I’d also like to thank my colleagues
and friends, especially James McKinna, Thorsten Altenkirch, Zhaohui Luo, Paul
Callaghan, Randy Pollack, Peter Hancock, Edwin Brady, James Chapman and
Peter Morris. Sebastian Hanowski and Wouter Swierstra deserve special credit
for the feedback they have given me. Finally, to those who were there in Tartu,
thank you for making the experience one I shall always value.

This work was supported by EPSRC grants GR/R72259 and EP/C512022.

References

1. Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recur-
sion. Journal of Functional Programming, 2000.

2. Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda-terms
using generalized inductive types. In Computer Science Logic 1999, 1999.

3. Lennart Augustsson. Compiling Pattern Matching. In Jean-Pierre Jouannaud,
editor, Functional Programming Languages and Computer Architecture, volume
201 of LNCS, pages 368–381. Springer-Verlag, 1985.

Epigram: Practical Programming with Dependent Types 169

4. Lennart Augustsson. Cayenne—a language with dependent types. In ACM Inter-
national Conference on Functional Programming ’98. ACM, 1998.

5. Lennart Augustsson and Magnus Carlsson. An exercise in dependent types:
A well-typed interpreter. Available at http://www.cs.chalmers.se/ augustss/

cayenne/interp.ps, 1999.
6. Françoise Bellegarde and James Hook. Substitution: A formal methods case study

using monads and transformations. Science of Computer Programming, 1995.
7. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-

velopment, Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. Springer-Verlag, 2004.

8. Richard Bird and Oege de Moor. Algebra of Programming. Prentice Hall, 1997.
9. Richard Bird and Ross Paterson. de Bruijn notation as a nested datatype. Journal

of Functional Programming, 9(1):77–92, 1999.
10. Edwin Brady. Practical Implementation of a Dependently Typed Functional Pro-

gramming Language. PhD thesis, University of Durham, 2005.
11. L’Équipe Coq. The Coq Proof Assistant Reference Manual. http://pauillac.

inria.fr/coq/doc/main.html, 2001.
12. Catarina Coquand and Thierry Coquand. Structured Type Theory. In Workshop

on Logical Frameworks and Metalanguages, 1999.
13. Thierry Coquand. Pattern Matching with Dependent Types. In Bengt Nordström,

Kent Petersson, and Gordon Plotkin, editors, Electronic Proceedings of the Third
Annual BRA Workshop on Logical Frameworks (B̊astad, Sweden), 1992.

14. Nicolas G. de Bruijn. Lambda Calculus notation with nameless dummies: a tool for
automatic formula manipulation. Indagationes Mathematicæ, 34:381–392, 1972.

15. Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory. In Gérard
Huet and Gordon Plotkin, editors, Logical Frameworks. CUP, 1991.

16. Daniel Fridlender and Mia Indrika. Do we need dependent types? Journal of
Functional Programming, 10(4):409–415, 2000.

17. Eduardo Giménez. Codifying guarded definitions with recursive schemes. In Peter
Dybjer, Bengt Nordström, and Jan Smith, editors, Types for Proofs and Programs,
’94, volume 996 of LNCS, pages 39–59. Springer-Verlag, 1994.

18. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March
2003. Proc. of the ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

19. Zhaohui Luo. Computation and Reasoning: A Type Theory for Computer Science.
Oxford University Press, 1994.

20. Zhaohui Luo and Robert Pollack. LEGO Proof Development System: User’s Man-
ual. Technical Report ECS-LFCS-92-211, Laboratory for Foundations of Computer
Science, University of Edinburgh, 1992.

21. Lena Magnusson and Bengt Nordström. The ALF proof editor and its proof engine.
In Henk Barendregt and Tobias Nipkow, editors, Types for Proofs and Programs,
LNCS 806. Springer-Verlag, 1994. Selected papers from the Int. Workshop TYPES
’93, Nijmegen, May 1993.

22. Per Martin-Löf. A theory of types. manuscript, 1971.
23. Conor McBride. Dependently Typed Functional Programs and their Proofs.

PhD thesis, University of Edinburgh, 1999. Available from http://www.lfcs.

informatics.ed.ac.uk/reports/00/ECS-LFCS-00-419/.
24. Conor McBride. Faking It (Simulating Dependent Types in Haskell). Journal of

Functional Programming, 12(4& 5):375–392, 2002. Special Issue on Haskell.

170 C. McBride

25. Conor McBride. First-Order Unification by Structural Recursion. Journal of Func-
tional Programming, 13(6), 2003.

26. Conor McBride. Epigram, 2004. http://www.dur.ac.uk/CARG/epigram.
27. Conor McBride and James McKinna. The view from the left. Journal of Functional

Programming, 14(1), 2004.
28. Fred McBride. Computer Aided Manipulation of Symbols. PhD thesis, Queen’s

University of Belfast, 1970.
29. Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition

of Standard ML, revised edition. MIT Press, 1997.
30. Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,

1998.
31. Chris Okasaki. From Fast Exponentiation to Square Matrices: An Adventure in

Types. In ACM International Conference on Functional Programming ’99, 1999.
32. Simon Peyton Jones and John Hughes, editors. Haskell’98: A Non-Strict Func-

tional Language, 1999. Available from http://www.haskell.org/definition .
33. Simon Peyton Jones, Geoffrey Washburn, and Stephanie Weirich. Wobbly types:

type inference for generalised algebraic data types. Unpublished, 2004.
34. Dag Prawitz. Natural Deduction—A proof theoretical study. Almquist and Wiksell,

Stockholm, 1965.
35. Bengt Nordström, Kent Petersson, and Jan Smith. Programming in Martin-Löf’s

type theory: an introduction. Oxford University Press, 1990.
36. Alan Robinson. A Machine-oriented Logic Based on the Resolution Principle.

Journal of the ACM, 12:23–41, 1965.
37. David Turner. Elementary Strong Functional Programming. In Functional Pro-

gramming Languages in Education, First International Symposium, volume 1022
of LNCS. Springer-Verlag, 1995.

38. Philip Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proceedings of POPL ’87. ACM, 1987.

39. Hongwei Xi. Dependent Types in Practical Programming. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, 1998.

40. Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of the Conference on Programming Language Design
and Implementation (PLDI’98). ACM Press, 1998.

Combining Datatypes and Effects

Alberto Pardo

Instituto de Computación, Universidad de la República,
Julio Herrera y Reissig 565, 11300 Montevideo, Uruguay

pardo@fing.edu.uy

Abstract. Recursion schemes over datatypes constitute a powerful tool
to structure functional programs. Standard schemes, like map and fold,
have traditionally been studied in the context of purely-functional pro-
grams. In this paper we propose the generalization of well-known recur-
sion schemes with the aim to obtain structuring mechanisms for programs
with effects, assuming that effects are modelled by monads. We analyze
the definition as well as the algebraic laws associated with the new recur-
sion schemes. The way monads encapsulate effects plays an important
role in the definition of the monadic recursion schemes, as it permits to
focus on the structure of the recursive programs with effects disregard-
ing the specific details of the effects involved. We illustrate the use of
the recursion schemes and their laws with some traversal algorithms on
graphs.

1 Introduction

In functional programming, it is common to find programs written using a com-
positional design, where a program is constructed as a collection of simple and
easy to write functions which communicate through function composition. Pro-
grams so defined are modular and have many benefits, such as clarity and main-
tainability, but unfortunately they are inefficient. Each function composition
f ◦ g implies passing information from one function to the other through an in-
termediate data structure which is produced by g and consumed by f . This has
associated a computational cost, since the nodes of the intermediate data struc-
ture need to be allocated, filled, inspected and finally discarded from memory.

Intermediate data structures can be removed by the application of a program
transformation technique known as deforestation [30]. Diverse approaches to de-
forestation can be found in the literature [30,11,10,27,23]. In this paper we follow
an approach based on recursive program schemes over data types [18,6,4,8]. By
program schemes we mean higher-order functions that capture common patterns
of computation over data types and help in structuring programs. Typical ex-
amples are functions like map and fold [3], but there are many others. Recursion
schemes have associated algebraic laws, which are useful for formal reasoning
about programs as well as for program transformation purposes. In connection
with deforestation, there is a particularly relevant subset of these laws, the so-
called fusion laws, which involve the elimination of intermediate data structures.

171–209, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

172 A. Pardo

The purpose of this paper is to study recursion schemes for programs with
effects, assuming that effects are modelled by monads [2]. Most of the standard
recursion schemes can only deal with purely-functional programs (i.e. effect-free
programs). This means that they fail when we try to use them to represent
programs with effects. Basically, the problem is with the shape of recursion that
such programs possess, which is different from that of purely-functional ones.
This raises the necessity of generalizing the existing recursion schemes to cope
with the patterns of computations of programs with effects.

The compositional style of programming still holds in the context of programs
with effects. This means that we will be interested in eliminating intermediate
data structures generated by the composition of monadic programs, but now
produced as the result of monadic computations. Our strategy will be therefore
the derivation of fusion laws associated with the program schemes for programs
with effects in order to restore deforestation in the presence of effects.

The paper is built on previous work on recursion schemes for programs with
effects [20,25,24]. In contrast to [25,24], where a more abstract style of presenta-
tion based on category theory was followed, in this paper concepts and definitions
are described in a functional programming style, using a Haskell-like notation.

The paper is organized as follows. In Section 2 we review some standard re-
cursion schemes and their associated fusion laws. Section 3 presents background
material on monads. Section 4 is devoted to the analysis of recursion schemes
for programs with effects. We also present examples which illustrate the use of
the program schemes and their laws. In Section 5, we conclude the paper with
a brief description of a program fusion tool which integrates many of the ideas
discussed in the paper.

2 Recursive Program Schemes

The program schemes described in the paper encapsulate common patterns of
computation of recursive functions and have a strong connection with datatypes.
Before presenting well-known recursion schemes for purely-functional programs,
we will show a general construction used to capture datatype declarations. Based
on that construction, we will be able to give a generic definition of the recursion
schemes, parameterised by the structure of some of the datatypes involved.

Throughout we shall assume we are working in the context of a lazy functional
language with a cpo semantics, in which types are interpreted as pointed cpos
(complete partial orders with a least element ⊥) and functions are interpreted
as continuous functions between pointed cpos. As usual, a function f is said to
be strict if it preserves the least element, i.e. f ⊥ = ⊥.

2.1 Data Types

The general construction relies on the concept of a functor. A functor consists
of two components, both denoted by F : a type constructor F , and a function
F :: (a → b) → (F a → F b), which preserves identities and compositions:

Combining Datatypes and Effects 173

F id = id F (f ◦ g) = F f ◦ F g

A standard example of a functor is that formed by the List type constructor and
the well-known map function, which applies a function to the elements of a list,
building a new list with the results.

map :: (a → b) → (List a → List b)
map f Nil = Nil
map f (Cons a as) = Cons (f a) (map f as)

We will use functors to capture the structure (or signature) of datatypes. In
this paper we will only consider a restricted class of datatypes, called regular
datatypes. These are datatypes whose declarations contain no function spaces
and have recursive occurrences with the same arguments from left-hand sides.
The functors corresponding to regular datatypes’ signatures will be characterised
by an inductive definition, composed by the following basic functors.

Identity Functor. The identity functor is defined as the identity type construc-
tor and the identity function (on functions):

type I a = a

I :: (a → b) → (I a → I b)
I f = f

Constant Functor. For any type t , we can construct a constant functor de-
fined as the constant type constructor and the constant function that maps any
function to the identity on t :

type t a = t

t :: (a → b) → (t a → t b)
t f = id

Product Functor. The product functor is an example of a bifunctor (a functor
on two arguments). The product type constructor gives the type of pairs as
result. The mapping function takes two functions which are applied to each
component of the input pair.

data a × b = (a, b)

(×) :: (a → c) → (b → d) → (a × b → c × d)
(f × g) (a, b) = (f a, g b)

The elements of a product can be inspected using the projection functions.

π1 :: a × b → a
π1 (a, b) = a

π2 :: a × b → b
π2 (a, b) = b

174 A. Pardo

The split operation allows us to construct a product from a given object.

(�) :: (c → a) → (c → b) → (c → a × b)
(f � g) x = (f x , g x)

Among others, the following laws hold:

(f � g) ◦ h = (f ◦ h) � (g ◦ h)

(f × g) ◦ (h � k) = (f ◦ h) � (g ◦ k)

Sum Functor. The sum functor builds the disjoint sum of two types, which are
unions of tagged elements.

data a + b = Left a | Right b

(+) :: (a → c) → (b → d) → (a + b → c + d)
(f + g) (Left a) = Left (f a)
(f + g) (Right b) = Right (g b)

Associated with sums we can define a case analysis operator:

(�) :: (a → c) → (b → c) → (a + b → c)
(f � g) (Left a) = f a
(f � g) (Right b) = g b

which satisfies the following properties:

f strict ⇒ f ◦ (g � h) = f ◦ g � f ◦ h

(f � g) ◦ (h + k) = f ◦ h � g ◦ k

Functor Composition. The composition of two functors F and G is denoted
by F G. In particular, we can define the composition of the bifunctors × and +
with functors F and G, written F × G and F + G, as follows:

type (F × G) a = F a × G a
(F × G) f = F f × G f

type (F + G) a = F a + G a
(F + G) f = F f + G f

Regular Functors. Regular functors are functors built from identities, con-
stants, products, sums, compositions and type functors.

F ::= I | t | F × F | F + F | F F | D

D stands for type functors, which are functors corresponding to polymorphic
recursive datatypes (the List functor is an example). Their definition is given in
Section 2.3.

The General Construction. The idea is to describe the top level structure of
a datatype by means of a functor. Consider a regular datatype declaration,

data τ = C1 τ1,1 · · · τ1,k1 | · · · | Cn τn,1 · · · τn,kn

Combining Datatypes and Effects 175

The assumption that τ is regular implies that each τi,j is restricted to the fol-
lowing forms: some constant type t (like Int , Char , or even a type variable); a
type constructor D (e.g. List) applied to a type τ ′

i,j ; or τ itself.
The derivation of a functor from a datatype declaration then proceeds as

follows:

– pack the arguments of the constructors in tuples; for constant constructors
(i.e. those with no arguments) we place the empty tuple ();

– regard alternatives as sums, replacing | by +; and
– substitute the occurrences of τ by a type variable a in every τi,j .

As a result, we obtain the following type constructor:

F a = σ1,1 × · · · × σ1,k1 + · · · + σn,1 × · · · × σn,kn

where σi,j = τi,j [τ := a]1. The body of the mapping function F :: (a → b) →
(F a → F b) is similar to that of F a, with the difference that now we substitute
the occurrences of the type variable a by a function f ::a → b, and write identities
in the other positions:

Ff = σ1,1 × · · · × σ1,k1 + · · · + σn,1 × · · · × σn,kn

with

σi,j =

⎧⎪⎨⎪⎩
f if σi,j = a

id if σi,j = t, for some type t

D σ′
i,j if σi,j = D σ′

i,j

Example 1.

– For the datatype of natural numbers,

data Nat = Zero | Succ Nat

we can derive a functor N given by

type N a = () + a

N :: (a → b) → (N a → N b)
N f = id + f

As a functorial expression, N = () + I .
– For a datatype of arithmetic expressions:

data Exp = Num Int | Add Exp Exp

we can derive a functor E given by

type E a = Int + Exp × Exp

E :: (a → b) → (E a → E b)
E f = id + f × f

As a functorial expression, E = Int + I × I .

1 By s[t := a] we denote the replacement of every occurrence of t by a in s.

176 A. Pardo

– For the datatype of lists,

List a = Nil | Cons a (List a)

we can derive a functor La given by

type La b = () + a × b

La :: (b → c) → (La b → La c)
La f = id + id × f

As a functorial expression, La = () + a × I . Notice that in this case the
functor is parameterised. This happens with the signature of every poly-
morphic datatype, since it is necessary to reflect in the functor the presence
of the type parameter. A parameterised functor Fa is actually the partial
application of a bifunctor F : type Fa b = F a b and Fa f = F id f . �

Every (recursive) regular datatype is then understood as a solution of an
equation Fx ∼= x, being F the functor that captures its signature. A solution to
this equation corresponds to a fixed point of the functor F , given by a type t
and an isomorphism between F t and t . The underlying semantics in terms of
cpos ensures the existence of a unique (up to isomorphism) fixed point to every
regular functor F whose type is denoted by μF . The isomorphism is provided
by the strict functions,

FμF
inF ��
outF

μF

each the inverse of the other, such that inF (outF) packs the constructors (de-
structors) of the datatype. The type μF contains partial, finite as well as infinite
values. Further details can be found in [1,8].

Example 2.

– In the case of the datatype of natural numbers, the corresponding isomor-
phism is given by the type μN = Nat and the functions inN and outN :

inN :: N Nat → Nat
inN = const Zero � Succ

outN :: Nat → N Nat
outN Zero = Left ()
outN (Succ n) = Right n

const :: a → b → a
const a b = a

– In the case of the datatype of lists, the corresponding isomorphism is given
by the type μLa = List a and the functions inLa and outLa :

inLa :: La (List a) → List a
inLa = const Nil � uncurry Cons

Combining Datatypes and Effects 177

outLa :: List a → La (List a)
outLa Nil = Left ()
outLa (Cons a as) = Right (a, as)

uncurry :: (a → b → c) → (a × b → c)
uncurry f (a, b) = f a b

�

2.2 Fold

Fold is a pattern of recursion that captures funcion definitions by structural
recursion. The best known example of fold is the definition for lists,

foldL :: (b, a → b → b) → List a → b
foldL (h1, h2) = fL

where
fL Nil = h1

fL (Cons a as) = h2 a (fL as)

which corresponds to the foldr operator [3], but the same construction can be
generalized to any regular datatype.

The general definition of fold can be represented by the following diagram:

μF
fold h � a

FμF

inF

�

F (fold h)
� F a

h

�

Since outF is the inverse of the isomorphism inF , we can write:

fold :: (F a → a) → μF → a
fold h = h ◦ F (fold h) ◦ outF

A function h :: F a → a is called an F-algebra. The functor F plays the role of
signature of the algebra, as it encodes the information about the operations of
the algebra. The type a is called the carrier of the algebra. An F-homomorphism
between two algebras h :: F a → a and k :: F b → b is a function f :: a → b
between the carriers that commutes with the operations. This is specified by the
condition f ◦ h = k ◦ F f . Notice that fold is a homomorphism from inF to h.

Remark 1. When writing the instances of the program schemes, we will adopt the
following notational convention for algebras: We will write (h′

1, . . . , h
′
n) instead

of h1� · · ·�hn :: F a → a, such that, h′
i = v when hi = const v :: () → a, or

h′
i :: τ1 → · · · → τk → a is the curried version of hi :: τ1 × · · · × τk → a. For

example, given an algebra const v�f ::La b → b we will write (e, curry f)::(b, a →
b → b). �

178 A. Pardo

Example 3. The following are instances of fold for different datatypes.

Natural numbers

foldN :: (a, a → a) → Nat → a
foldN (h1, h2) = fN

where
fN Zero = h1

fN (Succ n) = h2 (fN n)

For instance, addition can be defined as:

add :: Nat → Nat → Nat
add m = foldN (m, Succ)

Leaf-labelled binary trees

data Btree a = Leaf a | Join (Btree a) (Btree a)

type Ba b = a + b × b

Ba :: (b → c) → (Ba b → Ba c)
Ba f = id + f × f

foldB :: (a → b, b → b → b) → Btree a → b
foldB (h1, h2) = fB

where
fB (Leaf a) = h1 a
fB (Join t t ′) = h2 (fB t) (fB t ′)

For instance,

mirror :: Btree a → Btree a
mirror (Leaf a) = Leaf a
mirror (Join t t ′) = Join (mirror t ′) (mirror t)

can be defined as:

mirror = foldB (Leaf , λt t ′ → Join t ′ t) �

Fold enjoys some algebraic laws that are useful for program transformation.
A law that plays an important role is fold fusion. It states that the composition
of a fold with a homomorphism is again a fold.

f strict ∧ f ◦ h = k ◦ F f ⇒ f ◦ fold h = fold k

The next law is known as acid rain or fold-fold fusion. The goal of acid rain
is to combine functions that produce and consume elements of an intermediate
data structure. The intermediate datatype is required to be generated by a fold
whose algebra is given in terms of a polymorphic function.

τ :: ∀ a . (F a → a) → (G a → a)
⇒

fold h ◦ fold (τ inF) = fold (τ h)

Combining Datatypes and Effects 179

Remark 2. We will adopt a samilar notational convention as for algebras for
writing functions τ as part of the instances of programs schemes. Concretely, in
the instances we will regard a function τ as a function between tuples. That is,
if h1� · · ·�hm = τ(k1� · · ·�kn), then we will understand this transformation
between algebras as (h′

1, . . . , h
′
m) = τ(k′

1, . . . , k
′
n), where each h′

i and k′
j is ob-

tained from hi and kj , respectively, by the convention for algebras. The following
example uses this convention. �

Example 4. We use acid-rain to show that
sizeB ◦ mirror = sizeB

where
sizeB :: Btree a → Int
sizeB = foldB (const 1, (+))

counts the number of leaves of a binary tree. The proof proceeds as follows:

sizeB ◦ mirror
= { definition of sizeB and mirror }

foldB (const 1, (+)) ◦ foldB (Leaf , λt t ′ → Join t ′ t)
= { define τ (h1, h2) = (h1, λx x ′ → h2 x ′ x) }

foldB (const 1, (+)) ◦ foldB (τ inBa)
= { acid rain }

foldB (τ (const 1, (+)))
= { definition of τ }

foldB (const 1, λx x ′ → x ′ + x)
= { commutativity of +, section (+) }

foldB (const 1, (+))
= { definition of sizeB }

sizeB �

2.3 Type Functors

Every polymorphic regular datatype gives rise to a polymorphic type constructor
D a = μFa, which can be made into a functor (called a type functor) by defining
its mapping function:

D :: (a → b) → (D a → D b)
D f = fold (inFb

◦ F f id)

Example 5.

Lists The list type functor corresponds to the standard map function [3]:

List :: (a → b) → (List a → List b)
List f = foldL (Nil , λa bs → Cons (f a) bs)

that is,

List f Nil = Nil
List f (Cons a as) = Cons (f a) (List f as)

180 A. Pardo

Leaf-labelled binary trees

Btree :: (a → b) → (Btree a → Btree b)
Btree f = foldB (Leaf ◦ f , Join)

that is,

Btree f (Leaf a) = Leaf (f a)
Btree f (Join t t ′) = Join (Btree f t) (Btree f t ′) �

Example 6. Rose trees are multiway branching structures:

data Rose a = Fork a (List (Rose a))
The signature of rose trees is captured by a functor Ra given by

type Ra b = a × List b

Ra :: (b → c) → (Ra b → Ra c)
Ra f = id × List f

As a functorial expression, Ra = a × List . The fold operator is defined by,

foldR :: (Ra b → b) → Rose a → b
foldR h = fR

where
fR (Fork a rs) = h a (List fR rs)

�

A standard property of type functors is map-fold fusion. This law states that a
map followed by a fold is a fold.

fold h ◦ D f = fold (h ◦ F f id)

2.4 Unfold

Let us now analyze the dual case. The corresponding pattern of recursion, called
unfold [9,12], captures function definitions by structural corecursion. By corecur-
sion we understand functions whose structure is dictated by that of the values
produced as result. Unfold has a pattern of recursion given by the following
scheme:

a
unfold g � μF

F a

g

�

F (unfold g)
� F μF

outF

�

Proceeding as with fold, since inF is the inverse of outF , we can write:

unfold :: (a → F a) → a → μF

unfold g = inF ◦ F (unfold g) ◦ g

Combining Datatypes and Effects 181

Example 7. The following are instances of unfold for different datatypes.

Natural numbers

unfoldN :: (a → N a) → a → Nat
unfoldN g a = case (g a) of

Left () → Zero
Right a′ → Succ (unfoldN g a′)

Lists

unfoldL :: (b → La b) → b → List a
unfoldL g b = case (g b) of

Left () → Nil
Right (a, b′) → Cons a (unfoldL g b′)

Leaf-labelled binary trees

unfoldB :: (b → Ba b) → b → Btree a
unfoldB g b = case (g b) of

Left a → Leaf a
Right (b1 , b2) → Join (unfoldB g b1) (unfoldB g b2)

Rose trees

unfoldR :: (b → Ra b) → b → Rose a
unfoldR g b = let (a, bs) = g b

in Fork a (List (unfoldR g) bs)

�

A function g ::a → F a is called an F-coalgebra. A F-homomorphism between
two coalgebras g :: a → F a and g ′ :: b → F b is a function f :: a → b such that
g ′ ◦ f = F f ◦ g.

There is a corresponding fusion law for unfold, which states that the compo-
sition of a homomorphism with an unfold is again an unfold.

g ′ ◦ f = F f ◦ g ⇒ unfold g ′ ◦ f = unfold g

There is also an acid rain law, called unfold-unfold fusion.

σ :: ∀ a . (a → F a) → (a → G a)
⇒

unfold (σ outF) ◦ unfold g = unfold (σ g)

2.5 Hylomorphism

Now we look at functions given by the composition of a fold with an unfold.
They capture the idea of general recursive functions whose structure is dictated
by that of a virtual data structure.

Given an algebra h :: F b → b and a coalgebra g :: a → F a, a hylomorphism
[18,19,27,23] is a function hylo h g :: a → b defined by

182 A. Pardo

hylo h g = a
unfold g � μF

fold h � b (1)

An alternative definition of hylomorphism shows that it is not necessary to
construct the intermediate data structure:

hylo :: (F b → b) → (a → F a) → a → b
hylo h g = h ◦ F (hylo h g) ◦ g

that is,

a
hylo h g � b

F a

g

�

F (hylo h g)
� F b

h

�

From this definition it is easy to see that fold and unfold are special cases of
hylomorphism.

fold h = hylo h outF unfold g = hylo inF g

Example 8. We show the definition of hylomorphism for different datatypes.
Lists

hyloL :: (c, a → c → c) → (b → La b) → b → c
hyloL (h1, h2) g b = hylo

where
hylo b = case (g b) of

Left () → h1

Right (a, b′) → h2 a (hylo b′)

For example, the function that computes the factorial of a number
fact :: Int → Int
fact n | n < 1 = 1

| otherwise = n ∗ fact (n − 1)
can be written as:

fact = hyloL (1, (∗)) g
where

g n | n < 1 = Left ()
| otherwise = Right (n, n − 1)

The reason of presenting fact as a hylomorphism associated with lists is because
there is a virtual list that can be seen reflected in the form of the call-tree. Such
a list can be made explicit by using (1):

fact = prod ◦ upto

prod :: List Int → Int
prod = foldL (1, (∗))

Combining Datatypes and Effects 183

upto :: Int → List Int
upto n | n < 1 = Nil

| otherwise = Cons n (upto (n − 1))

Internally-labelled binary trees

data Tree a = Empty | Node (Tree a) a (Tree a)

type Ta b = () + b × a × b

Ta :: (b → c) → (Ta b → Ta c)
Ta f = id + f × id × f

hyloT :: (c, c → a → c → c) → (b → Ta b) → b → c
hyloT (h1, h2) g = hylo

where
hylo b = case (g b) of

Left () → h1

Right (b1 , a, b2) → h2 (hylo b1) a (hylo b2)

For example, the usual definition of quicksort

qsort :: Ord a ⇒ List a → List a
qsort Nil = Nil
qsort (Cons a as) = qsort [x | x ← as ; x � a]

++ wrap a ++
qsort [x | x ← as ; x > a]

wrap :: a → List a
wrap a = Cons a Nil

can be written as a hylomorphism as follows:

qsort = hyloT (Nil , h) g
where

h ys a zs = ys ++ wrap a ++ zs
g Nil = Left ()
g (Cons a as) = Right ([x | x ← as ; x � a], a, [x | x ← as ; x > a])

�

The following fusion laws are a direct consequence of (1).

Hylo Fusion.

f strict ∧ f ◦ h = k ◦ F f ⇒ f ◦ hylo h g = hylo k g
g ′ ◦ f = F f ◦ g ⇒ hylo h g ′ ◦ f = hylo h g

Hylo-Fold Fusion.

τ :: ∀ a . (F a → a) → (G a → a)
⇒

fold h ◦ hylo (τ inF) g = hylo (τ h) g

184 A. Pardo

Unfold-Hylo Fusion.

σ :: ∀ a . (a → F a) → (a → G a)
⇒

hylo h (σ outF) ◦ unfold g = hylo h (σ g)

3 Monads

It is well-known that computational effects, such as exceptions, side-effects, or
input/output, can be uniformly modelled in terms of algebraic structures called
monads [21,2]. In functional programming, monads are a powerful mechanism
to structure functional programs that produce effects [31].

A monad is usually presented as a Kleisli triple (m, return, >>=) composed by
a type constructor m, a polymorphic function return and a polymorphic operator
(>>=) often pronounced bind. The natural way to define a monad in Haskell is
by means of a class.

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b) → m b

Computations delivering values of type a are regarded as objects of type m a,
and can be understood as terms with remaining computation steps. The bind
operator describes how computations are combined. An expression of the form
m >>= λx → m ′ is read as follows: evaluate computation m, bind the variable
x to the resulting value of this computation, and then continue with the evalu-
ation of computation m ′. How the effect is passed around is a matter for each
monad. In some cases, we may not be interested in binding the result of the first
computation to be used in the second. This can be performed by an operator
pronounced then,

(>>) :: Monad m ⇒ m a → m b → m b
m >> m ′ = m >>= λ → m ′

Formally, to be a monad, the components of the triple must satisfy the following
equations:

m >>= return = m (2)
return a >>= λx → m = m [x := a] (3)

(m >>= λx → m ′) >>= λy → m ′′ = m >>= λx → (m ′ >>= λy → m ′′) (4)

In (4) x cannot appear free in m′′. The expression m [x := a] means the substi-
tution of all free occurrences of x by a in m.

With the introduction of monads the focus of attention is now on functions
of type a → m b, often referred to as monadic functions, which produce an effect
when applied to an argument. Given a monadic function f :: a → m b, we define
f� :: m a → m b as f� m = m >>= f . Using the same idea it is possible to define
the Kleisli composition of two monadic functions,

Combining Datatypes and Effects 185

(•) :: Monad m ⇒ (b → m c) → (a → m b) → (a → m c)
(f • g) a = g a >>= f

Now we can assign a meaning to the laws of Kleisli triples. The first two laws
amount to say that return is a left and right identity with respect to Kleisli
composition, whereas the last one expresses that composition is associative. Note
that f • g = f� ◦ g.

Associated with every monad we can define also a map function, which applies
a function to the result yielded by a computation, and a lifting operator, which
turns an arbitrary function into a monadic function.

mmap :: Monad m ⇒ (a → b) → (m a → m b)
mmap f m = m >>= λa → return (f a)

(̂) :: (a → b) → (a → m b)

f̂ = return ◦ f

Using the Kleisli triple’s laws it can be easily verified that both mmap and (̂)
happen to be functorial on functions:

mmap id = id îd = return

mmap (f ◦ g) = mmap f ◦ mmap g ̂f ◦ g = f̂ • ĝ

Example 9. The exception monad models the occurrence of exceptions in a pro-
gram.

data Exc a = Ok a | Fail Exception
type Exception = String

instance Monad Exc where
return a = Ok a
(Ok a) >>= f = f a
(Fail e) >>= f = Fail e

This monad captures computations which either succeed returning a value, or
fail raising a specific exception signaled by a value of type Exception . The return
operation takes a value and returns a computation that always succeeds, whereas
bind may be thought of as a kind of strict function application that propagates
an exception if one occurs.

When there is a unique exception value, the exception monad is often referred
to as the maybe monad.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return a = Just a
(Just a) >>= f = f a
Nothing >>= f = Nothing

�

186 A. Pardo

Example 10. State-based computations are modelled by the state monad. These
are computations that take an initial state and return a value and a possibly
modified state.

newtype State s a = State (s → (a, s))

instance Monad (State s) where
return x = State (λs → (x , s))
State c >>= f = State (λs → let (a, s ′) = c s

State c′ = f a
in c′ s ′)

The bind operator combines two computations in sequence so that the state and
value resulting from the first computation are supplied to the second one.

The state monad has been used as an effective tool for encapsulating ac-
tual imperative features, such as, mutable variables, destructive data structures,
and input/output, while retaining fundamental properties of the language (see
[26,14,13]). The idea is to hide the real state in an abstract data type (based on
the monad) which is equipped with primitive operations that internally access
the real state [31,5,13]. �

Example 11. The list monad enables us to describe computations that produce
a list of results, which can be used to model a form of nondeterminism.

instance Monad List where
return = wrap
Nil >>= f = Nil
(Cons a as) >>= f = f a ++ (as >>= f)

This monad can be seen as a generalization of the maybe monad: a computation
of type List a may succeed with several outcomes, or fail by returning no result
at all. �

With the aim at improving readability of monadic programs, Haskell provides
a special syntax called the do notation. It is defined by the following translation
rules:

do {x ← m; m ′} = m >>= λx → do {m ′}
do {m; m ′} = m >> do {m ′}

do {m } = m

4 Recursion with Monadic Effects

Recursion and monads turn out to be two important structuring devices in
functional programming. In this section we combine them with the aim to obtain
structuring mechanisms for recursive programs with effects. A natural result of
this combination will be the generalization of the existing recursion schemes
to work with programs with effects. The way monads encapsulate effects turns

Combining Datatypes and Effects 187

out to be essential for this integration, since it permits to focus on the relevant
structure of recursive programs disregarding the specific details of the effects
they produce.

The fusion laws associated with the monadic program schemes are particu-
larly interesting because they encapsulate new cases of deforestation. However,
as we will see later, some of the fusion laws require very strong conditions for
their application, reducing dramatically their possibilities to be considered in
practice. To overcome this problem we will introduce alternative fusion laws,
which, though not so powerful, turn out to be useful in practice.

Two alternative approaches can be adopted to the definition of monadic
program schemes. One of them, to be presented first, is a strictly structural
approach based on a lifting construction. This means to translate to the monadic
universe the constructions that characterize the recursion schemes, as well as
the concepts that take part in them. The other approach, to be presented in
Subsection 4.8, is more pragmatical and turns out to be more useful in practice.

4.1 Lifting

Let us start explaining the notion of lifting. Our goal is to define program schemes
that capture the recursion structure of functions with effects. Consider the pat-
tern of recursion captured by hylomorphism:

a
hylo � b

F a

g

�

F hylo
� F b

h

�

By lifting we mean that we view each arrow of this diagram as an effect-
producing function (a somehow imperative view). By thinking functionally, we
make the effects explicit, giving rise to the following recursion scheme:

a
mhylo � m b

m (F a)

g

�

(F̂ mhylo)�
� m (F b)

h�

�
(5)

where h :: F b → m b, g ::a → m (F a) and F̂ :: (a → m b) → (F a → m (F b)),
for an arbitrary monad m. These ingredients are monadic versions of the notions
of algebra, coalgebra and functor, respectively. Before introducing the monadic
versions of fold, unfold and hylomorphism, we analyze first the F̂ construction,
since it plays an essential role in the strictly structural approach to the definition
of the monadic recursive program schemes.

188 A. Pardo

4.2 Monadic Extension of a Functor

The monadic extension of a functor F [7,28,24] is a function

F̂ :: (a → m b) → (F a → m (F b))

whose action embodies that of F . Monadic extensions are used to express the
structure of the recursive calls in monadic functions. Every monadic extension
F̂ is in one-to-one correspondence with a distributive law

distF :: F (m a) → m (F a)

a polymorphic function that performs the distribution of a functor over a monad.
In fact, for each distributive law distF , the action of F̂ on a function f ::a → m b
can be defined by

F̂ f = F a
F f� F (m b)

distF� m (F b) (6)

Hence, F̂ f first applies f to each argument position of type a within a compound
value of type F a, and then joins the monadic effects produced in each function
application into a computation that delivers a compound value of type F b.
Conversely, given a monadic extension F̂ , the corresponding distributive law is
given by distF = F̂ id .

A definition of the distributive law distF :: F (m a) → m (F a) for each
regular functor F can be given by induction on the structure of F :

dist I = id distF×G = dist× ◦ (distF × distG)

dist t = return distF+G = dist+ ◦ (distF + distG)

distFG = distF ◦ F distG distD = fold (mmap inFa ◦ distF)

where

dist+ :: m a + m b → m (a + b)
dist+ = λs → case s of

Left ma → do a ← ma
return (Left a)

Right mb → do b ← mb
return (Right b)

In the case of distD , with D a = μFa, distF :: F (m a) (m b) → m (F a b)
represents a distributive law for the bifunctor F . Distributive laws for regular
bifunctors can be defined analogously by induction.

The inductive definition of distF given above is parametric in the distributive
law for the product functor

dist× :: (m a, m b) → m (a, b)

Here we have two equally valid alternatives to choose. One is to define dist× as
a left-to-right product distribution,

dist× (m, m ′) = do {a ← m; b ← m ′; return (a, b)}

Combining Datatypes and Effects 189

combining a pair of computations by first evaluating the first one and then the
second. The other alternative is to evaluate the computations from right-to-left,

dist× (m, m ′) = do {b ← m ′; a ← m; return (a, b)}
A monad is said to be commutative if both alternatives produce the same result
on the same input. Monads like identity or state reader [31] are commutative.
Examples of noncommutative monads are state and list.

Example 12. Assuming that dist× proceeds from left-to-right, the following are
examples of distributive laws:

distN :: Monad m ⇒ N (m a) → m (N a)
distN = λx → case x of

Left () → return (Left ())
Right ma → do a ← ma

return (Right a)

distLa :: Monad m ⇒ L a (m b) → m (L a b)
distLa = λx → case x of

Left () → return (Left ())
Right (a, mb) → do b ← mb

return (Right (a, b))

distBa :: Monad m ⇒ B a (m b) → m (B a b)
distBa = λx → case x of

Left a → return (Left a)
Right (mb, mb′) → do b ← mb

b′ ← mb′

return (Right (b, b′))

distRa :: Monad m ⇒ R a (m b) → m (R a b)
distRa = λ(a, mbs) → do bs ← sequence mbs

return (a, bs)
where sequence is a distributive law corresponding to the list type functor:

sequence :: Monad m ⇒ List (m a) → m (List a)
sequence Nil = return Nil
sequence (Cons m ms) = do a ← m

as ← sequence ms
return (Cons a as)

�
An inductive definition of F̂ can be derived from the definition of distF :

Î f = f ̂(F + G) f = dist+ ◦ (F̂ f + Ĝ f)
t̂ f = return ̂(F × G) f = dist× ◦ (F̂ f × Ĝ f)
F̂G f = F̂ Ĝ f D̂ f = fold (mmap inFa ◦ F̂ (f , id))

In the case of D̂ , F̂ is the monadic extension of the bifunctor F , where μFa = Da.

190 A. Pardo

Example 13. Assuming that dist× proceeds from left to right, the following are
examples of monadic extensions:

N̂ :: Monad m ⇒ (a → m b) → (N a → m (N b))

N̂ f = λx → case x of
Left () → return (Left ())
Right a → do b ← f a

return (Right b)

L̂a :: Monad m ⇒ (b → m c) → (L a b → m (L a c))

L̂a f = λx → case x of
Left () → return (Left ())
Right (a, b) → do c ← f b

return (Right (a, c))

B̂a :: Monad m ⇒ (b → m c) → (B a b → m (B a c))

B̂a f = λx → case x of
Left a → return (Left a)
Right (b, b′) → do c ← f b

c′ ← f b′

return (Right (c, c′))

R̂a :: Monad m ⇒ (b → m c) → (R a b → m (R a c))

R̂a f = λ(a, bs) → do cs ← mapM f bs
return (a, cs)

where mapM is a monadic extension L̂ist of the list type functor:

mapM :: Monad m ⇒ (a → m b) → (List a → m (List b))
mapM f Nil = return Nil
mapM f (Cons a as) = do b ← f a

bs ← mapM f as
return (Cons b bs)

�

A monadic extension is said to be a lifting whenever it behaves like a functor
with respect to monadic functions. That is, when it preserves identities (returns)
and Kleisli composition.

F̂ return = return F̂ (f • g) = F̂ f • F̂ g

As established by Mulry [22], a monadic extension is a lifting iff its associated
distributive law satisfies the following conditions:

distF ◦ F return = return (7)
distF ◦ F join = distF • distF (8)

Combining Datatypes and Effects 191

where

join :: Monad m ⇒ m (m a) → m a
join m = do {m ′ ← m; m ′}

Equation (7) ensures the preservation of identities, while (8) makes F̂ distribute
over Kleisli composition.

An interesting case to analyze is that of the product functor.2 It is easy to
verify that (7) is valid for every monad:

dist× ◦ (return × return) = return

For example, assuming that dist× proceeds from left to right, we have that:
(dist× ◦ (return × return)) (a, b)

= { definition dist× }
do {x ← return a; y ← return b; return (x , y)}

= { (3) }
do {y ← return b; return (a, y)}

= { (3) }
return (a, b)

The same holds if dist× is right to left. However, equation (8),

(m2 a, m2 b)
join × join� (m a, m b)

m (m a, m b)

dist×
�

dist�
×

� m (a, b)

dist×
�

does not always hold, since it requires the monad to be commutative. To see the
problem, let us calculate the expressions corresponding to each side of the equa-
tion. Again, assume that dist× is left to right. We start with the left-hand side:

(dist× ◦ (join × join)) (m2 , m2 ′)
= { definition of dist× }

do {a ← join m2 ; b ← join m2 ′; return (a, b)}
= { definition of join }

do {a ← do {m ← m2 ; m }; b ← do {m ′ ← m2 ′; m ′}; return (a, b)}
= { (4) }

do {m ← m2 ; a ← m; m ′ ← m2 ′; b ← m ′; return (a, b)}
Now, the right-hand side:

(dist× • dist×) (m2 , m2 ′)
= { definition of dist× and Kleisli composition }

do {(n, n ′) ← do {m ← m2 ; m ′ ← m2 ′; return (m, m ′)};
a ← n; b ← n ′; return (a, b)}

= { (3) and (4) }
do {m ← m2 ; m ′ ← m2 ′; a ← m; b ← m ′; return (a, b)}

2 A detailed analysis for all regular functors can be found in [25,24].

192 A. Pardo

Both expressions involve exactly the same computations, but they are executed
in different order. If we were working with the state monad, for example, the
order in which computations are performed is completely relevant both for the
side-effects produced and for the values delivered by the computations.

The failure of (8) for functors containing products makes it necessary to
add the hypothesis of preservation of Kleisli composition in those fusion laws
in which that condition is required. There are some functors involving products
for which (8) holds. These are functors containing product expressions of the
form F = t × I (or symmetric). For example, for that F , the distributive law
distF :: (t , m a) → m (t , a), given by,

distF (t , m)
= { inductive definition }

(dist× ◦ (return × id)) (t , m)
= { dist× left-to-right }

do {x ← return t ; a ← m; return (x , a)}
= { (3) }

do {a ← m; return (t , a)}

satisfies (8) for every monad, as can be verified:

(distF ◦ (id × join)) (t , m2)
= { definition of distF }

do {a ← join m2 ; return (t , a)}
= { definition of join }

do {a ← do {m ← m2 ; m }; return (t , a)}
= { (4) }

do {m ← m2 ; a ← m; return (t , a)}
= { (3) }

do {(x , n) ← do {m ← m2 ; return (t , m)}; a ← n; return (x , a)}
= { definition of distF and Kleisli composition }

(distF • distF) (t , m2)

4.3 Monadic Fold

Monadic fold [7] is a pattern of recursion that captures structural recursive func-
tions with monadic effects. A definition of monadic fold is obtained by instanti-
ating (5) with g = ̂outF :

μF
mfold h � m a

m (F μF)

̂outF

�

(F̂ (mfold h))�
� m (F a)

h�

�

Combining Datatypes and Effects 193

By (3) this can be simplified to:

μF
mfold h � m a

F μF

outF

�

F̂ (mfold h))
� m (F a)

h�

�

Therefore,

mfold :: Monad m ⇒ (F a → m a) → μF → m a

mfold h = h • F̂ (mfold h) ◦ outF

Example 14. The following are instances of monadic fold for different datatypes.
We assume a left-to-right product distribution dist×.

Lists

mfoldL :: Monad m ⇒ (m b, a → b → m b) → List a → m b
mfoldL (h1, h2) = mf L

where
mf L Nil = h1

mf L (Cons a as) = do y ← mf L as
h2 a y

For instance, the function that sums the numbers produced by a list of compu-
tations (performed from right to left),

msumL :: Monad m ⇒ List (m Int) → m Int
msumL Nil = return 0
msumL (Cons m ms) = do {y ← msumL ms ; x ← m; return (x + y)}

can be defined as:

msumL = mfoldL (return 0, λm y → do {x ← m; return (x + y)})
Leaf-labelled binary trees

mfoldB :: Monad m ⇒ (a → m b, b → b → m b) → Btree a → m b
mfoldB (h1, h2) = mf B

where
mf B (Leaf a) = h1 a
mf B (Join t t ′) = do y ← mf B t

y ′ ← mf B t ′

h2 y y ′

For instance, the function that sums the numbers produced by a tree of compu-
tations (performed from left to right),

194 A. Pardo

msumB :: Monad m ⇒ Btree (m Int) → m Int
msumB (Leaf m) = m
msumB (Join t t ′) = do {y ← msumB t ; y ′ ← msumB t ′; return (y + y ′)}

can be defined as:
msumB = mfoldB (id , λy y ′ → return (y + y ′))

Rose trees
mfoldR :: Monad m ⇒ (a → List b → m b) → Rose a → m b
mfoldR h = mf R

where
mf R (Fork a rs) = do ys ← mapM mf R rs

h a ys
In this case, the function that sums the numbers produced by a tree of compu-
tations,

msumR :: Monad m ⇒ Rose (m Int) → m Int
msumR (Fork m rs) = do ys ← mapM msumR rs

x ← m
return (x + sumL ys)

sumL :: List Int → Int
sumL = foldL (0, (+))

can be defined as:
msumR = mfoldR (λm ys → do {x ← m; return (x + sumL ys)})

�

Functions of type F a → m a are called monadic F-algebras; the type a
is called the carrier of the algebra. Like purely-functional algebras, monadic
algebras may be thought of as structures. The difference is that they return a
computation instead of simply a value. As could be seen in Example 14, we
adopt a similar notational convention as for algebras to write monadic algebras
in instances of the schemes.

A structure-preserving mapping between two monadic algebras is a function
between their carriers that preserves their structures, and is compatible with
their monadic effects. We identify two forms of structure-preserving mappings.

A F -homomorphism between two monadic algebras h :: F a → m a and
k :: F b → m b is a monadic function f :: a → m b such that f • h = k • F̂ f .
The use of F̂ in the definition of homomorphism is essential, since it is neces-
sary to join the effects produced by the occurrences of f within the expression
Ff . Homomorphisms are closed under composition provided F̂ preserves Kleisli
compositions.

A weaker notion of mapping between two monadic algebras h :: F a → m a
and k :: F b → m b is what we call a pure homomorphism: a function f :: a → b
such that mmap f ◦ h = k ◦F f . A pure homomorphism may be thought of as a
means of changing the ‘representation’ of a monadic algebra while maintaining
the effects that it produces.

Combining Datatypes and Effects 195

The following are fusion laws for monadic fold. In all of them it is necessary to
assume that function mmap :: (a → b) → (m a → m b) is strictness-preserving,
in the sense that it maps strict functions to strict functions.

MFold Fusion. If F̂ preserves Kleisli compositions,

f strict ∧ f • h = k • F̂ f ⇒ f • mfold h = mfold k

MFold Pure Fusion.

f strict ∧ mmap f ◦ h = k ◦ F f ⇒ mmap f ◦ mfold h = mfold k

MFold-Fold Fusion.
τ :: ∀ a . (F a → a) → (G a → m a)

⇒
mmap (fold h) ◦ mfold (τ inF) = mfold (τ h)

We will adopt a similar notational convention as for the case of algebras to
write this kind of functions τ in instances of the program schemes.

Example 15. In Example 14, we showed that msumL can be defined as a monadic
fold. Assuming that mmap is strictness-preserving, we use fusion to show that:

msumL = mmap sumL ◦ lsequence
being lsequence the function that performs a list of computations from right to
left:

lsequence :: Monad m ⇒ List (m a) → m (List a)
lsequence Nil = return Nil
lsequence (Cons m ms) = do as ← lsequence ms

a ← m
return (Cons a as)

We can express lsequence as a monadic fold,
lsequence = mfoldL (return Nil ,

λm as → do {a ← m; return (Cons a as)})
such that it is possible to write its monadic algebra as τ (Nil , Cons), where

τ :: (b, a → b → b) → (b, m a → b → m b)
τ (h1, h2) = (return h1,

λm b → do {a ← m; return (h2 a b)})
Finally, we calculate

mmap sumL ◦ lsequence

= { definition of sumL and lsequence }
mmap (foldL (0, (+))) ◦ mfoldL (τ (Nil , Cons))

= { mfold-fold fusion }
mfoldL (τ (0, (+)))

= { definition of τ and msumL }
msumL �

196 A. Pardo

4.4 Monadic Unfold

Now we turn to the analysis of corecursive functions with monadic effects. Like
monadic fold, the definition of monadic unfold can be obtained from (5), now
taking h = înF .

a
munfold g � m μF

m (F a)

g
�

(F̂ (munfold g))�
� m (F μF)

înF

�
�

that is,

munfold :: Monad m ⇒ (a → m (F a)) → (a → m μF)

munfold g a = (return ◦ inF) • F̂ (unfold g) • g

Example 16. We show the definition of monadic unfold for different datatypes.
Again, we assume a left to right product distribution dist×.

Lists

munfoldL :: Monad m ⇒ (b → m (L a b)) → (b → m (List a))
munfoldL g b = do x ← g b

case x of
Left () → return Nil
Right (a, b′) → do as ← munfoldL g b′

return (Cons a as)

Leaf-labelled binary trees

munfoldB :: Monad m ⇒ (b → m (B a b)) → (b → m (Btree a))
munfoldB g b = do x ← g b

case x of
Left a → return (Leaf a)
Right (b1 , b2) → do t1 ← munfoldB g b1

t2 ← munfoldB g b2
return (Join t1 t2)

Rose trees

munfoldR :: Monad m ⇒ (b → m (R a b)) → (b → m (Rose a))
munfoldR g b = do (a, bs) ← g b

rs ← mapM (munfoldR g) bs
return (Fork a rs) �

A function g :: a → m (F a) is called a monadic F-coalgebra. Structure-
preserving mappings between monadic coalgebras play an important role in the

Combining Datatypes and Effects 197

fusion laws for monadic unfold. A F-homomorphism between two monadic coal-
gebras g :: a → m (F a) and g ′ :: b → m (F b) is a function f :: a → m b such
that g ′ • f = F̂ f • g. Homomorphisms between monadic coalgebras are closed
under composition provided F̂ preserves Kleisli compositions.

Like with monadic algebras, we can define a weaker notion of structure-
preserving mapping. A pure homomorphism between two coalgebras g :: a →
m (F a) and g ′ ::b → m (F b) is a function f ::a → b between their carriers such
that g ′ ◦ f = mmap (F f) ◦ g. Again, a pure homomorphism may be regarded as
a representation changer.

The following are fusion laws for monadic unfold.

MUnfold Fusion. If F̂ preserves Kleisli compositions,

g ′ • f = F̂ f • g ⇒ munfold g ′ • f = munfold g

MUnfold Pure Fusion.

g ′ ◦ f = mmap (F f) ◦ g ⇒ munfold g ′ ◦ f = munfold g

Unfold-MUnfold Fusion.

σ :: ∀ a . (a → F a) → (a → m (G a))
⇒

munfold (σ outF) ◦ unfold g = munfold (σ g)

4.5 Graph Traversals

A graph traversal is a function that takes a list of roots (entry points to a graph)
and returns a list containing the vertices met along the way. In this subsection
we show that classical graph traversals, such as DFS or BFS, can be formulated
as a monadic unfold.

We assume a representation of graphs that provides a function adj which
returns the adjacency list for each vertex.

type Graph v = ...

adj :: Eq v ⇒ Graph v → v → List v

In a graph traversal vertices are visited at most once. Hence, it is necessary to
maintain a set where to keep track of vertices already visited in order to avoid
repeats. Let us assume an abstract data type of finite sets over a, with operations

emptyS :: Set a
insS :: Eq a ⇒ a → Set a → Set a
memS :: Eq a ⇒ a → Set a → Bool

where emptyS denotes the empty set, insS is set insertion and memS is a mem-
bership predicate.

We handle the set of visited nodes in a state monad. A standard technique
to do so is to encapsulate the set operations in an abstract data type based on
the monad [31]:

198 A. Pardo

type M a b = State (Set a) b

runMS :: M a b → b
runMS (State f) = π1 (f emptyS)

insMS :: Eq a ⇒ a → M a ()
insMS a = State (λs → ((), insS a s))

memMS :: Eq a ⇒ a → M a Bool
memMS a = State (λs → (memS a s , s))

Such a technique makes it possible to consider, if desired, an imperative repre-
sentation of sets, like e.g. a characteristic vector of boolean values, which allows
O(1) time insertions and lookups when implemented by a mutable array. In that
case the monadic abstract data type has to be implemented in terms of the ST
monad [14].

Now, we define graph traversal:

type Policy v = Graph v → v → List v → List v

graphtrav :: Eq v ⇒ Policy v → Graph v → List v → List v
graphtrav pol g = runMS ◦ gtrav pol g

gtrav :: Eq v ⇒ Policy v → Graph v → List v → M v (List v)
gtrav pol g vs = do xs ← mdropS vs

case xs of
Nil → return Nil
Cons v vs → do insMS v

zs ← gtrav pol g (pol g v vs)
return (Cons v zs)

mdropS :: Eq v ⇒ List v → M v (List v)
mdropS Nil = return Nil
mdropS (Cons v vs) = do b ← memMS a

if b then mdropS vs
else return (Cons v vs)

Given an initial list of roots, graphtrav first creates an empty set, then executes
gtrav , obtaining a list of vertices and a set, and finally discards the set and
returns the resulting list. In each iteration, the function gtrav starts with an
exploration of the current list of roots in order to find a vertex that has not been
visited yet. To this end, it removes from the front of that list every vertex u that
is marked as visited until, either an unvisited vertex is met, or the end of the
list is reached. This task is performed by the function mdropS .

After the application of mdropS , we visit the vertex at the head of the input
list, if still there is any, and mark it (by inserting it in the set). A new ‘state’ of the
list of roots is also computed. This is performed by an auxiliary function, called
pol , which encapsulates the administration policy used for the list of pending

Combining Datatypes and Effects 199

roots. That way, we obtain a formulation of graph traversal parameterized by a
strategy.

Function gtrav can be expressed as a monadic unfold:

gtrav pol g = munfoldL k
where

k :: List v → M v (L v (List v))
k vs = do xs ← mdropS vs

case xs of
Nil → return (Left ())
Cons v ys → do insMS v

return (Right (v , pol g v ys))

Particular traversal strategies are obtained by providing specific policies:

Depth-First Traversal. This is achieved by managing the list of pending roots
as a stack.

dfsTrav :: Eq v ⇒ Graph v → List v → List v
dfsTrav g = graphtrav dfsPol g

dfsPol g v vs = adj g v ++ vs

Breath-First Traversal. This is achieved by managing the list of pending roots
as a queue.

bfsTrav :: Eq v ⇒ Graph v → List v → List v
bfsTrav g = graphtrav bfsPol g

bfsPol g v vs = vs ++ adj g v

4.6 Monadic Hylomorphism

Monadic hylomorphism is a pattern of recursion that represents general recursive
monadic functions.

mhylo :: Monad m ⇒ (F b → m b) → (a → m (F a)) → (a → b)

mhylo h g = h • F̂ (mhylo h g) • g

Example 17. The following are instances of monadic hylomorphism for specific
datatypes. Again, we assume a left to right product distribution dist×.

Lists

mhyloL :: Monad m ⇒
(m c, a → c → m c) → (b → m (L a b)) → (b → m c)

mhyloL (h1, h2) g = mhL

where
mhL b = do x ← g b

200 A. Pardo

case x of
Left () → h1

Right (a, b′) → do c ← mhL b′

h2 a c

Leaf-labelled binary trees

mhyloB :: Monad m ⇒
(a → m c, c → c → m c) → (b → m (B a b)) → (b → c)

mhyloB (h1, h2) g = mhB

where
mhB b = do x ← g b

case x of
Left a → h1 a
Right (b1 , b2) → do c1 ← mhB b1

c2 ← mhB b2
h2 c1 c2

Rose trees

mhyloR :: Monad m ⇒
(a → [c] → m c) → (b → m (R a b)) → (b → m c)

mhyloh h g b = do (a, bs) ← g b
cs ← mapM (mhyloR h g) bs
h a cs �

The fusion laws for monadic hylomorphism are a consequence of those for
monadic fold and monadic unfold.

MHylo Fusion. If F̂ preserves Kleisli compositions,

f strict ∧ f • h = k • F̂ f ⇒ f • mhylo h g = mhylo k g
g ′ • f = F̂ f • g ⇒ mhylo h g ′ • f = mhylo h g

In the first law mmap needs to be strictness-preserving.

MHylo Pure Fusion.

f strict ∧ mmap f ◦ h = k ◦ F f ⇒ mmap f ◦ mhylo h g = mhylo k g
g ′ ◦ f = mmap (F f) ◦ g ⇒ mhylo h g ′ ◦ f = mhylo h g

In the first law mmap needs to be strictness-preserving.

MHylo-Fold Fusion. If mmap is strictness-preserving,

τ :: ∀ a . (F a → a) → (G a → m a)
⇒

mmap (fold h) ◦ mhylo (τ inF) g = mhylo (τ h) g

Combining Datatypes and Effects 201

Unfold-MHylo Fusion.

σ :: ∀ a . (a → F a) → (a → m (G a))
⇒

mhylo h (σ outF) ◦ unfold g = mhylo h (σ g)

4.7 Depth-First Search Algorithms

The references [16,17,15] show the advantages of explicitly maintaining the depth-
first spanning forest of a graph when implementing DFS algorithms in a lazy
functional language. The construction of the depth-first forest is performed in
two stages. In the first phase a forest of (possibly infinite) trees is generated. Each
tree is rooted with a vertex from a given list of entry points to the graph and con-
tains all vertices in the graph reachable from that root. The second phase runs a
prune process, which traverses the forest in depth-first order, discarding all sub-
trees whose roots have occurred previously. This generate-then-prune strategy
turns out to be the natural solution in the context of a lazy functional language.
Indeed, because of lazy evaluation, deeper levels of the trees are generated only
if and when demanded by the prune process.

In this subsection, we show that the depth-first forest construction can be
structured using monadic recursion schemes.

Generation. Like in Subsection 4.5, we assume a graph representation that
supports a function adj :: Eq v ⇒ Graph v → v → List v which returns the
adjacency list of each node of a graph.

The generation of a (rose) tree containing all vertices in the graph reachable
from a vertex v is defined by,

gen :: Eq v ⇒ Graph v → v → Rose v
gen g v = Fork v (List (gen g) (adj g v))

This function is naturally an unfold

gen g = unfoldR (id � adj g)

The generation of a forest from a given list of vertices is then obtained by map-
ping each vertex of the list with function gen .

fgen :: Eq v ⇒ Graph v → List v → List (Rose a)
fgen g = List (gen g)

Pruning. Pruning traverses the forest in depth-first order, discarding all sub-
trees whose roots have occurred previously. Analogous to graph traversals, prun-
ing needs to maintain a set (of marks) to keep track of the already visited nodes.
This suggest the use of the same monadic abstract data type.

In the pruning process we will use a datatype of rose trees extended with an
empty tree constructor.

data ERose a = ENull | EFork a (List (ERose a))

type ERa b = () + a × List b

202 A. Pardo

ERa :: (b → c) → (ERa b → ERa c)
ERa f = id + id × List f

When we find a root that has occurred previously, we prune the whole subtree.
The function that prunes an individual rose tree is defined by

pruneR :: Eq v ⇒ Rose v → M v (ERose v)
pruneR (Fork v rs) = do b ← memMS v

if b
then return ENull
else do insMS v

rs ′ ← mapM pruneR rs
return (EFork v rs ′)

This function can be written as a monadic unfold:

pruneR = munfoldER g
where

g (Fork v rs) = prStep (v , rs)
prStep (v , rs) = do b ← memMS v

if b
then return (Left ())
else do insMS v

return (Right (v , rs))

such that its coalgebra can be written as g = prStep ◦ outRv .
Pruning a forest just consists of pruning the trees in sequence:

fpruneR :: Eq v ⇒ List (Rose a) → M a (List (ERose v))
fpruneR = mapM pruneR

A drawback of this solution is that the resulting forest contains many unneces-
sary empty trees, which could be dropped if we convert the resulting extended
rose trees into rose trees again. The conversion is performed by simply traversing
the forest of extended rose tress, cleaning all occurrences of the empty tree:

fclean :: List (ERose a) → List (Rose a)
fclean = collect ◦ List clean

clean :: ERose a → Maybe (Rose a)
clean ENull = Nothing
clean (EFork a rs) = Just (Fork a (fclean rs))

collect :: List (Maybe a) → List a
collect Nil = Nil
collect (Cons m ms) = case m of

Nothing → collect ms
Just a → Cons a (collect ms)

Combining Datatypes and Effects 203

Clearly, both clean and collect are folds, clean = foldER cl and collect =
foldL coll , for suitable algebras cl and coll = (coll1 , coll2), respectively.

Finally, we define the function that prunes a forest of rose trees, returning
the rose trees that remain:

prune :: Eq v ⇒ List (Rose a) → M a (List (Rose a))
prune = mmap fclean ◦ fpruneR

Computing the Depth-First Forest. Now we define a function dfs that
computes the depth-first spanning forest of a graph reachable from a given list
of vertices.

dfs :: Eq v ⇒ Graph v → List v → List (Rose v)
dfs g = runMS ◦ prune ◦ fgen g

We use function runMS to hide the monadic state from the outside world. That
way, dfs is externally regarded as a purely functional. The internal components
of dfs can be fused as the following calculation shows.

prune ◦ fgen g
= { function definitions }

mmap (collect ◦ List clean) ◦ mapM (pruneR) ◦ List (gen g)
= { mapM = L̂ist and property: F̂ f ◦ F g = F̂ (f ◦ g) }

mmap (collect ◦ List clean) ◦ mapM (pruneR ◦ gen g)
= { functor mmap }

mmap collect ◦ mmap (List clean) ◦ mapM (pruneR ◦ gen g)

= { property: mmap (F f) ◦ F̂ g = F̂ (mmap f ◦ g) }
mmap collect ◦ mapM (mmap clean ◦ pruneR ◦ gen g)

= { define: gpc g = mmap clean ◦ pruneR ◦ gen g }
mmap collect ◦ mapM (gpc g)

= { property: mmap (fold h) ◦ D̂ f = fold (mmap h ◦ F̂ f id) }
foldL (mmap coll ◦ L̂ (gpc g) id)

We call gp (for generate then prune) the resulting fold. Inlining, we get the
following recursive definition:

gp :: Eq v ⇒ Graph v → List v → M v (List (Rose v))
gp g Nil = return Nil
gp g (Cons v vs) = do x ← gpc g v

rs ← gp g vs
return (case x of

Left () → rs
Right r → Cons r rs)

Now, let us analyze function gpc, which expresses how individual trees are gen-
erated, pruned and cleaned in a shot.

204 A. Pardo

gpc :: Eq v ⇒ Graph g → v → M v (Maybe (Rose a))
gpc g = mmap clean ◦ pruneR ◦ gen g

This definition can also be simplified:

mmap clean ◦ pruneR ◦ gen g
= { function definitions }

mmap (foldER cl) ◦ munfoldER (prStep ◦ outRv) ◦ unfoldR (id � adj g)
= { define: σ j = prStep ◦ j }

mmap (foldER cl) ◦ munfoldER (σ outRv) ◦ unfoldR (id � adj g)
= { unfold-munfold fusion }

mmap (foldER cl) ◦ munfoldER (σ (id � adj g))
= { factorization prop.: mmap (fold h) ◦ munfold g = mhylo ĥ g }

mhyloER ĉl (prStep ◦ (id � adj g))

Inlining, we obtain:

gpc g v = do b ← memMS v
if b
then return Nothing
else do insMS v

ms ← mapM (gpc g) (adj g v)
return (Just (Fork v (collect ms)))

Depth-First Traversal. To illustrate the use of the depth-first forest, we com-
pute the depth-first traversal of a graph by traversing the forest in preorder.
Other DFS algorithms under the same approach can be found in [16,17,15,24].

The preorder of a forest can be defined by

fpreorder :: List (Rose v) → List v
fpreoredr = concat ◦ List preorder

preorder :: Rose v → List v
preorder = foldR (Cons ◦ (id × concat))

We compute the depth-first traversal of a graph by listing the depth-first forest
in preorder:

dfsTrav :: Eq v ⇒ Graph g → List v → List v
dfsTrav g = fpreorder ◦ dfs g

We show now how the generation of the intermediate depth-first forest can be
eliminated using fusion.

fpreorder ◦ dfs g
= { function definitions }

concat ◦ List preorder ◦ runMS ◦ mmap collect ◦ mapM (gpc g)
= { parametricity property: f ◦ runMS = runMS ◦ mmap f }

runMS ◦ mmap (concat ◦ List preorder) ◦ mmap collect ◦ mapM (gpc g)

Combining Datatypes and Effects 205

= { functor mmap }
runMS ◦ mmap (concat ◦ List preorder ◦ collect) ◦ mapM (gpc g)

= { map-fold fusion, define pjoin = uncurry (++) ◦ (preorder × id) }
runMS ◦ mmap (foldL (Nil , pjoin) ◦ collect) ◦ mapM (gpc g)

= { define: τ (see below) }
runMS ◦ mmap (foldL (Nil , pjoin) ◦ foldL (τ (Nil , Cons))) ◦ mapM (gpc g)

= { fold-fold fusion }
runMS ◦ mmap (foldL (τ (Nil , pjoin))) ◦ mapM (gpc g)

= { property: mmap (fold h) ◦ D̂ f = fold (M h ◦ F̂ f id) }
runMS ◦ foldL (mmap (τ (Nil , pjoin)) ◦ L̂ (gpc g) id)

Function τ is given by:

τ :: (b, a → b → b) → (b, Maybe a → b → b)
τ (h1, h2) = (h1,

λm b → case m of
Nothing → b
Just a → h2 a b)

The property f ◦ runMS = runMS ◦ mmap f is an example of a parametricity
property or free theorem [29], which are properties that can be directly derived
from the type of polymorphic functions.

Calling mtrav the foldL obtained in the derivation and inlining, we obtain
this program:

mtrav :: Eq v ⇒ Graph g → List v → M v (List v)
mtrav g Nil = return Nil
mtrav g (Cons v vs) = do x ← gpc g v

as ← mtrav g vs
return (case x of

Nothing → as
Just r → preorder r ++ as)

4.8 A More Practical Approach

The monadic program schemes shown so far were all derived from the lifting
construction presented in Subsection 4.1.

a
mhylo � m b

m (F a)

g

�

(F̂ mhylo)�
� m (F b)

h�

�

206 A. Pardo

However, despite its theoretical elegance, this construction suffers from an im-
portant drawback that hinders the practical use of the program schemes derived
from it. The origin of the problem is the compulsory use of the distributive
law distF associated with F̂ as unique way of joining the effects produced by
the recursive calls. It is not hard to see that this structural requirement intro-
duces a restriction in the kind of functions that can be formulated in terms of
the monadic program schemes. To see a simple example, consider the following
function that prints the values contained in a leaf-labelled binary tree, with a
’+’ symbol in between.

printTree :: Show a ⇒ Btree a → IO ()
printTree (Leaf a) = putStr (show a)
printTree (Join t t ′) = do {printTree t ; putStr "+"; printTree t ′}

For instance, when applied to the tree Join (Join (Leaf 1) (Leaf 2)) (Leaf 3),
printTree returns an I/O action that, when performed, prints the string "1+2+3"
on the standard output. Since it is a monadic function defined by structural
recursion on the input tree, one could expect that it can be written as a monadic
fold. However, this is impossible. To see why, recall that the definition of monadic
fold for binary trees follows a pattern of recursion of this form:

mf B (Leaf a) = h1 a
mf B (Join t t ′) = do {y ← mf B t ; y ′ ← mf B t ′; h2 y y ′}

when a left to right product distribution dist× is assumed. According to this
pattern, in every recursive step the computations returned by the recursive calls
must be performed in sequence, one immediately after the other. This means
that there is no way of interleaving additional computations between the re-
cursive calls, precisely the contrary of what printTree does. This limitation is
a consequence of having fixed the use of a monadic extension F̂ as unique al-
ternative to structure the recursive calls in monadic program schemes. In other
words, the fault is in the lifting construction itself.

This problem can be overcome by introducing a more flexible construction
for the definition of monadic hylomorphism:

a
mhylo h g � m b

m (F a)

g

�

mmap (F (mhylo h g))
� m (F (m b))

h�

�

There are two differences between this definition and the one shown previously.
First, this definition avoids the use of a monadic extension F̂ , and second, the
type of h has changed with respect to the type it had previously. Now, its type is
F (m b) → m b. Therefore, strictly speaking, h is not more a monadic F -algebra,
but an F -algebra with monadic carrier. As a consequence of these modifications,
in the new scheme the computations returned by the recursive calls are not

Combining Datatypes and Effects 207

performed apart in a separate unit any more. Instead, they are provided to the
algebra h, which will specify the order in that these computations are performed,
as well as their possible interleaving with other computations.

It is easy to see that this new version of monadic hylomorphism subsumes
the previous one. In fact, a previous version of monadic hylomorphism (with
monadic algebra h :: F b → m b) can be represented in terms of the new one by
taking h • distF as algebra, that is, mhyloold h g = mhylo (h • distF) g. This
means that the definitions, examples and laws based on the lifting construction
can all be regarded as special cases of the new construction.

Of course, we can derive new definitions of monadic fold and unfold from the
new construction. For monadic unfold, the algebra of the monadic hylomorphism
should only join the effects of the computations returned by the recursive calls,
and build the values of the data structure using the constructors. Therefore,

munfold :: Monad m ⇒ (a → m (F a)) → a → m μF

munfold g = mhylo (înF • distF) g

Interestingly, this definition turns out to be equivalent to the one presented in
Subsection 4.4. A definition of monadic fold is obained by taking g = ̂outF . By
applying simplifications concerning the monad operations, we obtain:

mfold :: Monad m ⇒ (F (m a) → m a) → μF → m a
mfold h = h ◦ F (mfold h) ◦ outF

Observe that this is nothing but the definition of fold (see Subsection 2.2) with
the additional restriction that the algebra must be of monadic carrier. For in-
stance, for leaf-labelled binary trees, h :: (a → m b, m b → m b → mb). Now, we
can write printTree as a monadic fold:

printTree = mfoldB (putStr ◦ show , λm m ′ → do {m; putStr "+"; m ′})
Finally, we present a pair of fusion laws for the new version of monadic

hylomorphism.

MHylo-Fold Fusion. If mmap is strictness-preserving,

τ :: ∀ a . (F a → a) → (G (m a) → m a)
⇒

mmap (fold h) ◦ mhylo (τ inF) g = mhylo (τ h) g

Unfold-MHylo Fusion.

σ :: ∀ a . (a → F a) → (a → m (G a))
⇒

mhylo h (σ outF) ◦ unfold g = mhylo h (σ g)

5 A Program Fusion Tool

The research presented in this paper motivated the development of an interac-
tive program fusion tool that performs the automatic elimination of intermediate

208 A. Pardo

data structures from both purely-functional programas and programs with ef-
fects. The system accepts as input standard functional programs written in a
subset of Haskell and translates them into an internal representation in terms of
(monadic) hylomorphism. The tool is based on ideas and algorithms used in the
design of the HYLO system [23]. In addition to the manipulation of programs
with effects, our system extends HYLO with the treatment of some other shapes
of recursion for purely-functional programs.

The following web page contains documentation and versions of the tool:

http://www.fing.edu.uy/inco/proyectos/fusion

References

1. S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. M. Gabbay, and
T. S. E. Maibaum, editors, Handbook of Logic in Computer Science, volume 3,
pages 1–168. Clarendon Press, 1994.

2. N. Benton, J. Hughes, and E. Moggi. Monads and Effects. In APPSEM 2000
Summer School, LNCS 2395. Springer-Verlag, 2002.

3. R. Bird. Introduction to Functional Programming using Haskell, 2nd edition.
Prentice-Hall, UK, 1998.

4. R.S. Bird and O. de Moor. Algebra of Programming. Prentice Hall, UK, 1997.

5. Chih-Ping Chen and P. Hudak. Rolling Your Own Mutable ADT—A Connection
Between Linear Types and Monads. In 24th Symposium on Principles of Program-
ming Languages, pages 54–66. ACM, January 1997.

6. M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, Universiteit Twente,
The Netherlands, 1992.

7. M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Memoranda
Informatica 94-28, University of Twente, June 1994.

8. J. Gibbons. Calculating Functional Programs. In Algebraic and Coalgebraic Meth-
ods in the Mathematics of Program Construction, LNCS 2297, pages 148–203.
Springer-Verlag, January 2002.

9. J. Gibbons and G. Jones. The Under-Appreciated Unfold. In 3rd. International
Conference on Functional Programming. ACM, September 1998.

10. A. Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
Department of Computing Science, University of Glasgow, UK, 1996.

11. A. Gill, J. Launchbury, and S. Peyton Jones. A Shortcut to Deforestation. In
Conference on Functional Programming and Computer Architecture, 1993.

12. G. Hutton. Fold and Unfold for Program Semantics. In 3rd. International Confer-
ence on Functional Programming. ACM, September 1998.

13. S. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-
rency, exceptions, and foreign language calls in Haskell. In Engineering theories
of software construction, Marktoberdorf Summer School 2000. NATO ASI Series,
IOS press, 2001.

14. S. Peyton Jones and J. Launchbury. Lazy functional state threads. In Symposium
on Programming Language Design and Implementation (PLDI’94), pages 24–35.
ACM, 1994.

15. D. King. Functional Programming and Graph Algorithms. PhD thesis, Department
of Computing Science, University of Glasgow, UK, March 1996.

Combining Datatypes and Effects 209

16. D. King and J. Launchbury. Structuring depth-first search algorithms in Haskell. In
22nd Symposium on Principles of Programming Languages, pages 344–354. ACM,
1995.

17. J. Launchbury. Graph Algorithms with a Functional Flavour. In Advanced Func-
tional Programming, LNCS 925. Springer-Verlag, 1995.

18. E. Meijer, M. Fokkinga, and R. Paterson. Functional Programming with Bananas,
Lenses, Envelopes and Barbed Wire. In Functional Programming Languages and
Computer Architecture’91, LNCS 523. Springer-Verlag, August 1991.

19. E. Meijer and G. Hutton. Bananas in space: Extending fold and unfold to exponen-
tial types. In Functional Programming Languages and Computer Architecture’95,
pages 324–333, 1995.

20. E. Meijer and J. Jeuring. Merging Monads and Folds for Functional Programming.
In Advanced Functional Programming, LNCS 925, pages 228–266. Springer-Verlag,
1995.

21. E. Moggi. Notions of Computation and Monads. Information and Computation,
93:55–92, 1991.

22. P.S. Mulry. Lifting Theorems for Kleisli Categories. In 9th International Conference
on Mathematical Foundations of Programming Semantics, LNCS 802, pages 304–
319. Springer-Verlag, 1993.

23. Y. Onoue, Z. Hu, H. Iwasaki, and M. Takeichi. A Calculational Fusion System
HYLO. In IFIP TC 2 Working Conference on Algorithmic Languages and Calculi,
Le Bischenberg, France, pages 76–106. Chapman & Hall, February 1997.

24. A. Pardo. A Calculational Approach to Recursive Programs with Effects. PhD
thesis, Technische Universität Darmstadt, October 2001.

25. A. Pardo. Fusion of Recursive Programs with Computational Effects. Theoretical
Computer Science, 260:165–207, 2001.

26. S. Peyton-Jones and P. Wadler. Imperative Functional Programming. In 20th
Annual Symposium on Principles of Programming Languages, Charlotte, North
Carolina, 1993. ACM.

27. A. Takano and E. Meijer. Shortcut to Deforestation in Calculational Form. In
Functional Programming Languages and Computer Architecture’95, 1995.

28. D. Tuijnman. A Categorical Approach to Functional Programming. PhD thesis,
Fakultät für Informatik, Universität Ulm, Germany, January 1996.

29. P. Wadler. Theorems for free! In 4th International Conference on Functional
Programming and Computer Architecture, London, 1989.

30. P. Wadler. Deforestation: transforming programs to eliminate trees. Theoretical
Computer Science, 73:231–248, 1990.

31. P. Wadler. Monads for functional programming. In Advanced Functional Program-
ming, LNCS 925. Springer-Verlag, 1995.

GEC: A Toolkit for Generic Rapid Prototyping
of Type Safe Interactive Applications

Peter Achten, Marko van Eekelen,
Rinus Plasmeijer, and Arjen van Weelden

Nijmeegs Instituut voor Informatica en Informatiekunde,
Radboud Universiteit Nijmegen, Toernooiveld 1,

6525 ED Nijmegen, The Netherlands
{P.Achten, rinus, arjenw}@cs.ru.nl, marko@niii.ru.nl

Abstract. Programming GUIs with conventional GUI APIs is notori-
ously tedious. In these notes we present the GEC toolkit in which the
programmer can create user interfaces without any knowledge of low-
level I/O handling. Instead, he works with Graphical Editor Components
(GEC). A GEC is an interactive component that is automatically derived
from an arbitrary monomorphic data type, including higher order types.
It contains a value of that data type, visualizes it, and allows the user to
manipulate it in a type-safe way. The toolkit has a library of data types
that represent standard GUI elements such as buttons, text fields, and
so on. As a consequence, the programmer works with data types that
model the interactive system that he is interested in. Programs are con-
structed as a collection of communicating GECs. This communication
can be arranged in an ad-hoc way, or in a disciplined way, using a com-
binator library based on arrows. GECs are suitable for rapid prototyping
of real world applications, for teaching and for debugging. These notes
focus on the use of the GEC toolkit for functional programmers, only
briefly explaining its inner workings and underlying principles.

1 Introduction

In the last decade, Graphical User Interfaces (GUIs) have become the standard
for user interaction. Programming these interfaces can be done without much ef-
fort when the interface is rather static, and for many of these situations excellent
tools are available. However, when there is more dynamic interaction between
interface and application logic, such applications require tedious manual pro-
gramming in any programming language. Programmers need to be skilled in the
use of a large programming toolkit.

The goal of the Graphical Editor project is to obtain a concise programming
toolkit that is abstract, compositional, and type-directed. Abstraction is required
to reduce the size of the toolkit, compositionality reduces the effort of putting
together (or altering) GUI code, and type-directed automatic creation of GUIs
allows the programmer to focus on the data model. In contrast to visual pro-
gramming environments, programming toolkits can provide ultimate flexibility,

210–244, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

GEC: A Toolkit for Generic Rapid Prototyping 211

type safety, and dynamic behavior within a single framework. We use a pure
functional programming language (Clean [22]) because functional programming
languages have proven to be very suitable for creating abstraction layers on top
of each other. Additionally, they have strong support for type definitions and
type safety.

Our programming toolkit utilizes the Graphical Editor Component (GEC) [6]
as universal building block for constructing GUIs. A GECt is a graphical editor
for values of any monomorphic first-order type t. This type-directed creation
of GECs has been obtained by generic programming techniques [9,16,15]. With
generic programming one defines a family of functions that depend on the struc-
ture of types. The GEC toolkit project is to our knowledge the first project in
which generic programming techniques are used for the creation of GUI applica-
tions. It is not the purpose of these notes to explain the inner workings of the
GEC building blocks. The reader is referred to [6] for that. Instead we focus on
the use of these building blocks and on how the toolkit is built using the basic
blocks.

The basic first order GEC building blocks from [6] have been extended in
two ways, such that we can construct higher-order value editors [8]. The first
extension uses run-time dynamic typing [1,21], which allows us to include them
in the GEC toolkit, but this does not allow type-directed GUI creation. It does,
however, enable the toolkit to use polymorphic higher-order functions and data
types. The second extension uses compile-time static typing, in order to gain
monomorphic higher-order type-directed GUI creation of abstract types. It uses
the abstraction mechanism of the GEC toolkit [7].

Apart from putting all the earlier published work together in a single context,
focusing on the use of the toolkit and explaining the extensions using the basic
building blocks, these notes also introduce a library for composing GECs which
is based on the arrows [17] concept. Furthermore, these notes contain exercises
at the end of each section to encourage the reader to get familiar with the treated
GEC concepts.

These notes are structured as follows. Section 2 contains an overview of the
basic first-order GEC toolkit. In Sect. 3 it is explained how GECs can be com-
posed to form larger applications both using GECs directly as well as using a new
arrows library. The GEC-abstraction for model-view programming is treated in
Sect. 4. Extensions for working with higher order types, dynamically and stati-
cally are covered in Sect. 5. Related work is discussed in Sect. 6 and conclusions
are summarized in Sect. 7.

A note on the implementation and the examples in this paper. The project
has been realized in Clean. Familiarity with Haskell is assumed, relevant dif-
ferences between Haskell and Clean are explained in footnotes. The GUI code is
mapped to Object I/O [4], which is Clean’s library for GUIs. Given sufficient sup-
port for dynamic types, the results of this project can be transferred to Generic
Haskell [19], using the Haskell [20] port of Object I/O [3]. The complete code

212 P. Achten et al.

of all examples (including the complete GEC implementation in Clean) can be
downloaded from http://www.cs.ru.nl/∼clean/gec.

Finally, we need to point out that Clean uses an explicit multiple environ-
ment passing style [2] for I/O programming. As GECs are integrated with Clean
Object I/O, the I/O functions that are presented in these notes are state transi-
tion functions on the program state (PSt ps). The program state represents the
external world of an interactive program, tailored for GUI operations. In these
notes the identifier env is a value of this type. The uniqueness type system [10]
of Clean ensures single threaded use of the environment. To improve the read-
ability, uniqueness type attributes that actually appear in the type signatures
are not shown. Furthermore, the code has been slightly simplified, leaving out a
few details that are irrelevant for these notes.

2 The Basic GEC Programming Toolkit

With the GEC programming toolkit [6], one constructs GUI applications in a
compositional way using a high level of abstraction. The basic building block is
the Graphical Editor Component (GEC).

Graphical Editor Components. A GECt is an editor for values of type t. It
is generated with a generic function. The power of a generic scheme is that we
obtain an editor for free for any data type. This makes the approach particularly
suitable for rapid prototyping.

The standard appearance of a GEC is illustrated by the following example
that uses many functions and types that will be explained below:

module Editor
import StdEnv, StdIO, StdGEC

Start :: �World→ �World1

Start world = startIO MDI2 Void3 myEditor world

myEditor = generateEditor (”List” , [1])

generateEditor :: (String, t) (PSt ps) → PSt ps4 |5 gGEC{|�|}6 t
generateEditor (windowName,initialValue) env = newenv
where

(gecInterface, newenv)
= gGEC{|�|} (windowName, initialValue, const id) env

1 This function is equivalent with Haskell main::IO ().
2 MDI selects Object I/O’s Multiple Document Interface.
3 Void is equivalent with Haskell ().
4 Clean separates the types of function arguments by whitespace, instead of →.
5 In a function type, | introduces all overloading class restrictions.
6 Use the generic instance of kind � of gGEC.

GEC: A Toolkit for Generic Rapid Prototyping 213

Fig. 1. Generated editor for the standard list type, initially with value [1]

The complete GUI application is shown in Fig. 1.
The generic function gGEC creates GECs. The way it is defined is explained

in [6]. Here, we will focus on its use. It takes a definition (GECDef t env) of a
GECt and creates the GECt object in the environment. It returns an interface
(GECInterface t env) to that GECt object. The environment env is in this case
(PSt ps), since gGEC uses Object I/O.

generic7 gGEC t :: GECFunction t (PSt ps)

:: GECFunction t env
:==8 (GECDef t env) env→ (GECInterface t env,env)

The (GECDef t env) consists of three elements. The first is a string that
identifies the top-level Object I/O element (window or dialog) in which the
editor must be created. The second is the initial value of type t of the editor.
The third is a callback function of type t→ env→ env. This callback function
tells the editor which parts of the program need to be informed of user actions.
The editor uses this function to respond to changes to the value of the editor by
the application user.

:: GECDef t env :== (String,t ,CallBackFunction t env)
:: CallBackFunction t env :== t env→ env

The (GECInterface t env) is a record that contains all methods of the newly
created GECt.

:: GECInterface t env = { gecGetValue :: GecGet t env
, gecSetValue :: GecSet t env
}9

:: GecGet t env :== env→ (t ,env)
:: GecSet t env :== Update t env→ env
:: Update = YesUpdate | NoUpdate

The gecGetValue method returns the current value, and gecSetValue sets
the current value of the associated GECt object. The gecSetValue method has
an argument of type Update indicating whether or not the call-back function has
to be called propagating the change of the value through the system.

In Fig. 2 the basic use of the function gGEC is illustrated by showing the corre-
sponding GUI for several alternative definitions of myEditor (as in the example
7 generic f t :: T (t) introduces a generic function f with type scheme T (t).
8 :== introduces a type synonym.
9 A record type with fields fi of types ti is denoted as {fi :: ti}.

214 P. Achten et al.

Alternative definition of myEditor: Corresponding GUI:

myEditor2

= generateEditor (”Integer” ,0)

myEditor3

= generateEditor (”String” ,”Hello World!”)

myEditor4

= generateEditor (”Tuple of Integer and String” ,(0 ,”Hello World!”))

myEditor5

= generateEditor

(”Tree” ,Node Leaf 1 Leaf)

:: Tree a

= Node (Tree a) a (Tree a) | Leaf

derive gGEC Tree

Fig. 2. Automatically derived editors for standard types

above). This generates an editor for the argument data type. All you have to
specify is the name of the window and an initial value. On the right the editor
is shown.

For standard types a version of gGEC is derived automatically. For user-defined
types it is required that a version of gGEC is explicitly derived for the given type.
For the type Tree this is explicitly done in the example. In the rest of these notes
these derives are not shown.

Programs can consist of several editors. Editors can communicate with each
other by tying together the various gecSetValue and gecGetValue methods. In
Sect. 3.2 it is shown how an arrow combinator library [5] can be used for the
necessary plumbing. In this section we use the function selfGEC (explained in
Sect. 3.1) to create ‘self-correcting’ editors:

selfGEC ::
String (t→ t) t (PSt ps) → (PSt ps) | gGEC{|�|} t & bimap{|�|}10 ps

Given function f of type t→ t on the data model of type t and an initial
value v of type t, selfGEC gui f v creates the associated GECt using gGEC
(hence the context restriction). selfGEC creates a feedback loop that sends every
edited output value back as input to the same editor, after applying f.

An example of the use of selfGEC is given by the following program that
creates an editor for a self-balancing binary tree:
10 The generic gGEC function requires an instantiation of the predefined generic function

bimap.

GEC: A Toolkit for Generic Rapid Prototyping 215

myEditor = selfGEC ”Tree” balanceTree (Node Leaf 1 Leaf)

balanceTree = fromListToBalTree o11 fromTreeToList

fromTreeToList Leaf = []
fromTreeToList (Node l x r)

= fromTreeToList l ++12 [x:fromTreeToList r]13

fromListToBalTree = balance o sort14

where balance [] = Leaf
balance [x] = Node Leaf x Leaf
balance xs = Node (balance bs) b (balance as)
where (as , [b:bs]) = splitAt (length xs / 2) xs

In this example, we create a GEC(Tree Int) which displays the indicated initial
value Node Leaf 1 Leaf (left screen shot in Fig. 3). The user can manipulate
this value in any desired order, producing new values of type Tree Int (e.g.,
turning the upper Leaf into a Node with the pull-down menu, the result of which
is shown in the right screen shot in Fig. 3). Each time a new value is created
or edited, the feedback function balanceTree is applied. balanceTree takes an
argument of type Tree a and returns the tree after balancing it. The shape and
lay-out of the tree being displayed adjusts itself automatically. Default values
are generated by the editor when needed.

Fig. 3. A self-correcting editor for balanced trees

Note that the only things that need to be specified by the programmer are
the initial value of the desired type, and the feedback function.

Customizing Types. Clean allows generic functions to be overruled by cus-
tom definitions for arbitrary types. gGEC is no exception to this rule. The left
screenshot in Fig. 4 shows the default interface of the definition below for the
ubiquitous counter example, and the code that creates it:

Although the definition of the counter is a sensible one, its visual interface
clearly is not. In [6] we show how to change the representation of all values
11 o is the function composition operator.
12 ++ is the list concatenation operator.
13 In Clean, list denotations are always delimited by [and].
14 sort :: [a] → [a] | Ord a.

216 P. Achten et al.

myEditor = selfGEC ”Counter” updCntr (0 ,Neutral)

updCntr :: Counter → Counter

updCntr (n ,Up) = (n+1 ,Neutral)
updCntr (n ,Down) = (n-1 ,Neutral)
updCntr any = any

:: Counter :== (Int ,UpDown)
:: UpDown = UpPressed | DownPressed | Neutral

Fig. 4. The default (left) and customized (right) editor of the counter example

of type Counter to the screenshot shown at the right in Fig. 4. Because it has
been explained in detail in [6], we will not repeat the code, but point out the
important points:

– In this particular example, only the definitions of (,) (hide the constructor
and place its arguments next to each other) and UpDown (display instead
of) need to be changed.

– Normally gGEC creates the required logical (value passing) and visual infras-
tructure (GUI components). The programmer, when customizing gGEC, only
needs to define the visual infrastructure. The programmer must be knowl-
edgeable about Object I/O programming.

– The overruled instance works not only at the top-level. Every nested occur-
rence of the Counter type is now represented as shown right in Fig. 4.

For the creation of GUI applications, we need to model both specific GUI
elements (such as buttons) and layout control (such as horizontal, vertical lay-
out). In a way similar to the one shown above for the spin button, this has also
been done by specializing gGEC for a number of other types that either represent
GUI elements or layout. Below the predefined specialized editors are shown for a
number of types. The specialized editor for Display creates a non-editable GUI;
for Button a button is created; for <|> and <-> two editors are created below
each other, respectively next to each other; and finally Hide creates no GUI at
all which is useful for remembering state.

For large data structures it may be infeasible to display the complete data
structure. Customization can be used to define a GECt that creates a view on a
finite subset of such a large data structure with buttons to browse through the
rest of the data structure. This same technique can also be used to create GECs
for lazy infinite data structures. For these infinite data structures customization
is a must since clearly they can never be fully displayed.

Exercise 1. A single address GEC. Write a GEC for editing a single record
containing standard data base data such as name, address and location.

Exercise 2. A List GEC (advanced). Write a specialized GEC that edits a
lazy list with buttons to go to editing the next element.

GEC: A Toolkit for Generic Rapid Prototyping 217

Type of the value given to myEditor: Corresponding GUI:

:: Display a = Display a

:: Button = Button String

| Pressed

:: <|> a b = a <|> b

:: <-> a b = a <-> b

:: Hide a = Hide a

Fig. 5. Effect of some predefined customized editors on “Hello World!”

Exercise 3. An address data base GEC. Combine the applications above to
write a GEC that edits a list of addresses.

3 Composition of GECs

In this section we present a number of examples to show how GECs can be
combined using the callback mechanism and method invocation (Sect. 3.1). In
Sect. 3.2 we show how these examples can be expressed using arrow combinators.

3.1 Manual Composition of GECs

Functionally Dependent GECs. The first composition example establishes
a functional dependency of type a→ b between a source editor GECa and des-
tination editor GECDisplay b:

applyGECs :: (String,String) (a→ b) a (PSt ps) → PSt ps
| gGEC{|�|} a & gGEC{|�|} b & bimap{|�|} ps

applyGECs (sa ,sb) f va env
#15 (gec_b, env) = gGEC{|�|} (sb , Display (f va) , const id) env
(gec_a, env) = gGEC{|�|} (sa , va , set gec_b f) env
= env

15 The #-notation of Clean has a special scope rule such that the same variable name can
be used for subsequent non-recursive #-definitions. For mutually recursive definitions
(as in apply2GECs) a standard where-definition has to be used with a different name
for each variable.

218 P. Achten et al.

set :: (GECInterface b (PSt ps)) (a→ b) a (PSt ps) → (PSt ps)
set gec f va env = gec.16gecSetValue NoUpdate (Display (f va)) env

The callback function of GECa uses the gecSetValue interface method of
GECb to update the current b value whenever the user modifies the a value. As
a simple example, one can construct an interactive editor for lists (see Fig. 6)
that are mapped to balanced trees by:

myEditor
= applyGECs (”List” ,”Balanced Tree”) fromListToBalTree [1 ,5 ,2]

Fig. 6. Turning lists into balanced binary trees

Of course, the same can be done for binary functions with slightly more effort:

apply2GECs :: (String,String,String) (a→ b→ c) a b (PSt ps)
→ (PSt ps)
| gGEC{|�|} a & gGEC{|�|} b & gGEC{|�|} c & bimap{|�|} ps

apply2GECs (sa ,sb ,sc) f va vb env = env3
where

(gec_c,env1) = gGEC{|�|} (sc ,Display (f va vb) ,const id) env
(gec_b,env2) = gGEC{|�|} (sb ,vb ,combine gec_a gec_c (flip f)) env1
(gec_a,env3) = gGEC{|�|} (sa ,va ,combine gec_b gec_c f) env2

combine :: (GECInterface y (PSt ps)) (GECInterface z (PSt ps))
(x→ y→ z) x (PSt ps) → PSt ps

combine gy gc f x env
(y ,env) = gy.gecGetValue env
env = gc.gecSetValue NoUpdate (Display (f x y)) env
= env

Notice that, due to the explicit environment passing style, it is trivial in Clean
to connect GECb with GECa and vice versa. In Haskell’s monadic I/O one needs
to tie the knot with fixIO.

As an example, one can construct two interactive list editors, that are merged
and put into a balanced tree (Fig. 7 shows the result):

16 r.f denotes the selection of field f of record r.

GEC: A Toolkit for Generic Rapid Prototyping 219

Fig. 7. Merging two lists into a balanced binary tree

myEditor
= apply2GECs (”List1” ,”List2” ,”Balanced Tree”) makeBalTree [1] [1]

where
makeBalTree l1 l2 = fromListToBalTree (l1 ++ l2)

Self-correcting GECs. In this example we give the implementation of the self-
correcting editor function gGEC that was already used in Sect. 2. Self-correcting
editors update themselves in response to user edit operations. The function def-
inition is concise:

selfGEC :: String (a→ a) a (PSt ps) → (PSt ps)
| gGEC{|�|} a & bimap{|�|} ps

selfGEC s f v env = env1
where
(gec,env1) = gGEC{|�|} (s ,f v ,λx→ gec.gecSetValue NoUpdate (f x)) env

As an example, one can now construct a self-sorting list as follows:

myEditor = selfGEC ”Self Sorting List” sort [5 ,1 ,2]

It is impossible for a user of this editor to create a stable non-sorted list value.

Mutually Dependent GECs. In a similar way one can define mutually de-
pendent GECs. Take the following definition of mutualGEC.

mutualGEC :: (String,String) a (a→ b) (b→ a) (PSt ps) → (PSt ps)
| gGEC{|�|} a & gGEC{|�|} b & bimap{|�|} ps

mutualGEC (gui1,gui2) va a2b b2a env = env2
where (gec_b,env1) = gGEC{|�|} (gui1, a2b va , set gec_a b2a) env

(gec_a,env2) = gGEC{|�|} (gui2, va , set gec_b a2b) env1

This function displays two GECs. It is given an initial value va of type a,
a function a2b :: a→ b, and a function b2a :: b→ a. The gec_a initially dis-
plays va, while gec_b initially displays a2b va. Each time one of the GECs is
changed, the other is updated automatically. The order in which changes are
made is irrelevant. For example, the application mutualGEC (“Euros”,“Pounds”)

220 P. Achten et al.

exchangerate = 1.4

:: Pounds = {pounds :: Real}
:: Euros = {euros :: Real}

toPounds :: Euros→ Pounds
toPounds {euros} = {pounds = euros / exchangerate}

toEuros :: Pounds→ Euros
toEuros {pounds} = {euros = pounds � exchangerate}

Fig. 8. Mutually dependent GECPounds and GECEuros

{euros = 3.5} toPounds toEuros results in an editor that calculates the ex-
change between pounds and euros (see Fig. 8) and vice versa.

The example of Fig. 8 may look a bit like a tiny spreadsheet, but it is es-
sentially different since standard spreadsheets do not allow mutual dependencies
between cells. Notice also the separation of concerns: the way GECs are coupled
is defined completely separate from the actual functionality.

3.2 Combinators for GEC Composition

The examples in Sect. 3.1 show that GECs can be composed by writing ap-
propriate callback functions that use the GECInterface methods gecGetValue
(get the value of a GEC) and gecSetValue (set its value). This explicit plumb-
ing can become cumbersome when larger and more complex situations must be
specified. What is needed, is a disciplined, and more abstract way of combining
components. Monads [26] and arrows [17] are the main candidates for such a
discipline. Monads abstract from computations that produce a value, whereas
arrows abstract from computations that, given certain input, produce values.
Because GECs also have input and produce values, arrows are the best match.
In this section we show how arrows can be used successfully for the composition
of GECs, resulting in structures that resemble circuits of GECs.

It is the task of our arrow model to introduce a standardized way of combining
GECs. As explained in Sect. 2, one uses a GECt through its interface of type
GECInterface t env. Method gecSetValue :: GecSet t env sets a new value
of type t in the associated GECt, and gecGetValue :: GecGet t env reads its
current value of type t.

If we generalize these types, then we can regard a GEC-to-be-combined as a
component that has input a and output b (where a = b = t in case of a ‘pure’
GECt). This generalization of a GEC-to-be-combined has type GecCircuit a b
because of its resemblance with electronic circuits. Consequently, this
GecCircuit a b has a slightly more general interface, namely a method to set
values of type GecSet a env, and a method to get values of type GecGet b env.
This generalized flow of control of a circuit is visualized in Fig. 9.

GEC: A Toolkit for Generic Rapid Prototyping 221

Fig. 9. A GEC Circuit (external view)

Fig. 10. A GEC Circuit (internal view)

When circuits are combined this will yield a double connection (one forward
set and one backward get for each circuit). It is essential to realize that usage of
the set method is restricted to the circuit that produces that input, and, likewise,
usage of the get method is restricted to the circuit that needs that output.

Moreover, a GEC-to-be-combined of type GecCircuit a b needs to know
where to send its output to, and where to obtain its input from. More precisely,
it is only completely defined if it is provided with a corresponding set method (of
type GecSet b env) and a get method (of type GecGet a env). These methods
correspond exactly with the ‘missing’ methods in Fig. 9. Put in other words, a
GecCircuit a b behaves as a function. Indeed, the way we obtain the restricted
communication is by passing continuation functions. Through these continua-
tions values are passed and set throughout the circuit. Each GecCircuit a b
is a function that takes two continuations as arguments (one for the input and
one for the output) and produces two continuations. The way a circuit takes its
continuation arguments, creates a circuit and produces new continuations, can
be visualized with the internal view of a circuit (see Fig. 10).

A GecCircuit is not only a continuation pair transformation function but it
also transforms an Object I/O environment since it has to be able to incorporate
the environment functions for the creation of graphical editor components. These
environment functions are of type (PSt ps) → (PSt ps).

The global idea sketched above motivates the following full definition of the
GecCircuit a b type:

:: GecCircuit a b
= GecCircuit (∀ ps:

(GecSet b (PSt ps) ,GecGet a (PSt ps) ,PSt ps)
→ (GecSet a (PSt ps) ,GecGet b (PSt ps) ,PSt ps))

The circuits do not depend on the program state ps. This is expressed ele-
gantly using a rank-2 polymorphic function type.

A GecCircuit a b generalizes GECs by accepting input values of type a
and produces output values of type b. Clearly, for every GECa there exists a
GecCircuit a a. This relation is expressed concisely with the function edit:

edit :: String→ GecCircuit a a | gGEC{|�|} a

222 P. Achten et al.

We will provide an instantiation of the standard arrow class for our GEC
arrows of type GecCircuit. This standard arrow class definition is given below.
It describes the basic combinators >>> (serial composition), arr (function lifting),
and first (saving values across computations). The other definitions below can
all be derived in the standard way from these basic arrow combinators. They
are repeated here because we use them in our examples.

class Arrow arr where
arr :: (a→ b) → arr a b
(>>>) :: (arr a b) → (arr b c) → arr a c
first :: (arr a b) → arr (a ,c) (b ,c)

// Combinators for free:
second :: (arr a b) → arr (c , a) (c , b)
second gec = arr swap >>> first gec >>> arr swap
where swap t = (snd t ,fst t)

returnA :: arr a a
returnA = arr id

(<<<) infixr 1 :: (arr b c) (arr a b) → arr a c
(<<<) l r = r >>> l

(���) infixr 3 :: (arr a b) (arr c d) → arr (a ,c) (b ,d)
(���) l r = first l >>> second r

(&&&) infixr 3 :: (arr a b) (arr a c) → arr a (b ,c)
(&&&) l r = arr (λx→ (x ,x)) >>> (l ��� r)

We use the arrow combinator definitions in the examples below. For each
example of Sect. 3.1, we give the definition using arrow combinators, and some
of the circuit structures as figures.

However, we first need to show how such a circuit comes to life in Object I/O.
This is done with the function startCircuit which basically turns a circuit into
an Object I/O state transition function. As such it can be used in the myEditor
function of Sect. 2.

startCircuit :: (GecCircuit a b) a (PSt ps) → PSt ps
startCircuit (GecCircuit k) a env

= let (_ ,_ ,env1) = k (setb,geta,env) in env1
where geta env = (a ,env)

setb _ _ env = env

Upon creation, the circuit function is applied to a geta function producing
the initial argument and a dummy set function that just passes the environment.

Functionally Dependent GECs. The first arrow example (of which the ex-
ternal view is given in Fig. 11) implements applyGECs of Sect. 3.1.

GEC: A Toolkit for Generic Rapid Prototyping 223

Fig. 11. applyGECs using arrows balancing a tree, external view

Fig. 12. apply2GECs using arrows creating a balanced tree from two lists, external view

myEditor
= startCircuit (applyGECs (”List” ,”Balanced Tree”)

(Display o fromListToBalTree)) [1 ,5 ,2]

applyGECs :: (String,String) (a→ b) → GecCircuit a b
| gGEC{|�|} a & gGEC{|�|} b

applyGECs (sa , sb) f = edit sa >>> arr f >>> edit sb

Two visual editors are shown. The first allows the user to edit the (initial)
list, and the second shows (and allows the user to edit) the resulting balanced
tree. In the hand coded examples, the initial value of a GEC was specified at the
time of its creation. Using the arrow combinators to construct a GecCircuit, we
specify the initial values for all GECs when we start the circuit.

The next example shows the arrow combinator version of apply2GECs (see
Fig. 12 for its external view):

myEditor = startCircuit (apply2GECs (”List1” ,”List2” ,”Balanced Tree”)
makeBalTree) ([1] , [2])

where
makeBalTree (l1 ,l2) = Display (fromListToBalTree (l1 ++ l2))

apply2GECs :: (String,String,String) ((a ,b) → c) → GecCircuit (a ,b) c
| gGEC{|�|} a & gGEC{|�|} b & gGEC{|�|} c

apply2GECs (sa , sb , sc) f = edit sa ��� edit sb >>> arr f >>> edit sc

The initial values for the input lists are paired, to allow the delayed initial-
ization using startCircuit. The example clearly shows that combining GECs
using arrow combinators is much more readable than the (often) recursive hand-
written functions. The linear flow of information between GECs, using the >>>
combinator, corresponds directly with the code. Although splitting points in flow
of information, using the ��� combinator, is less clear, it is still easier on the
eyes than the examples of Sect. 3.1.

224 P. Achten et al.

Fig. 13. selfGEC using arrows, self balancing a tree, external view

Self-correcting GECs. The example below shows the arrow combinator ver-
sion of the selfGEC example (see its external view in Fig. 13).

myEditor = startCircuit selfGEC Leaf

selfGEC :: String (a→ a) → GecCircuit a a | gGEC{|�|} a
selfGEC s f = feedback (arr f >>> edit s)

The way the feedback combinator constructs a feedback circuit is by taking
the value of the circuit and feeding it back again into the circuit. This is done
in such a way that it will not be propagated further when it arrives at a GEC
editor.

When a feedback circuit contains no editor at all, the meaning of the circuit
is undefined since in that case the calculation of the result would depend on itself
in a circular way. A feedback circuit in which each path of the circuit contains an
editor, is called well-formed. It is easy to check syntactically whether feedback
circuits are well-formed. Consider the following examples of non well-formed and
well-formed feedback circuits.

nonWellFormed1 = feedback (arr id >>> arr ((+) 1))
nonWellFormed2 = feedback (arr id &&& edit ”Int” >>>

arr (λ(x , y) → x + y))
wellFormed = feedback (edit ”Int” >>> arr ((+) 1))

It should be clear that the selfGEC function is well-formed. This completes
the arrow combinator versions of the examples of Sect. 3.1. The counter example
(Sect. 2) is also conveniently, and concisely, expressed below using arr and >>>.

myEditor = startCircuit (selfGEC ”Counter” updCntr) (0 ,Neutral)

Exercise 4. An intelligent form. Write using the combinators a GEC for an
intelligent form which calculates some of its values from others (VAT e.g.).

Exercise 5. An editor for editors (advanced exercise). Write an editor with
which it is possible to create editors. An optional basic design scheme of such a
GEC for GECs is shown below.

myEditor = startCircuit (designEditor >>>
arr convert >>>
applicationEditor) initvalue

designEditor :: GecCircuit DesignEditor DesignEditor

GEC: A Toolkit for Generic Rapid Prototyping 225

designEditor = feedback (
toDesignEditor >>>
edit ”design” >>>
arr (updateDesign o fromDesignEditor))

applicationEditor :: GecCircuit ApplicationEditor ApplicationEditor
applicationEditor = feedback (

arr (toApplicEditor o updateApplication) >>>
edit ”application” >>>
arr fromApplicEditor)

It uses two quite complex GECs that allow the user to edit the type and
visual appearance of another GEC: an editor for designing a GEC, as well as an
editor that displays, and allows the designer to interact with the designed GEC.
Note that the information flow between these editors is nicely expressed using
the arrow combinator >>> and that both feedback loops are well-formed.

4 Compositional Model-View Programming

When constructing a GUI application, the need arises to incrementally build
and modify the GUI under construction. From what is explained in the previous
sections, this means that one needs to modify the data structures, and hence also
the dependent code, when changing the application. In this section we explain
how to obtain a good separation between the logic of a GUI application (the
model) and the way it is presented to the user (the view). This way of separating
concerns is an instance of the model-view paradigm [18]. We show that it can
be incorporated smoothly within our toolkit by inventing a new way to realize
abstraction and composition based on the specialization mechanism that is used
by the generic framework of the GEC toolkit.

The technique is illustrated by means of the following running example of a
record with three fields, one of which contains the sum of the other two fields.

The code fragment below shows the data model. The data model is a record
of type MyDataModel. The intention is that whenever the user edits one of the
fields d_value1 or d_value2, then these new values are summed and displayed
in field d_sum. This behavior is defined by updDataModel. We want to emphasize
that the types and code shown in Fig. 14 are ‘carved in stone’: they do not
change in the rest of this section.

As a trivial starting point we take the view model equal to the data model
resulting in the following code and corresponding window (see Fig. 15).

The aim of this section is to show how the view on this data model can
be varied without any modifications to this data model. Some of the kind of
variations we would like to make easily are shown in Fig. 16 from left to right: a
non-editable field for the result, additionally one of the fields implemented as a
17 The record update {r&f1 = v1, . . . fn = vn} denotes a new record equal to r, but

with fields fi having values vi.

226 P. Achten et al.

:: MyDataModel

= { d_value1 :: Int , d_value2 :: Int , d_sum :: Int }

initDataModel :: (Int ,Int) → MyDataModel

initDataModel (v1 ,v2)
= { d_value1 = v1 , d_value2 = v2 , d_sum = v1 + v2 }

updDataModel :: MyDataModel → MyDataModel

updDataModel d = { d &17 d_sum = d.d_value1 + d.d_value2 }

myEditor = selfGEC ”View on Data”
(toMyViewModel o updDataModel o fromMyViewModel)
(toMyViewModel (initDataModel (0 ,0)))

Fig. 14. The code that is carved in stone for the running sum-example of this section

:: MyViewModel

= { v_value1 :: Int , v_value2 :: Int , v_sum :: Int }

toMyViewModel :: MyDataModel → MyViewModel

toMyViewModel d = { v_value1 = d.d_value1

, v_value2 = d.d_value2

, v_sum = d.d_sum }

fromMyViewModel :: MyViewModel → MyDataModel

fromMyViewModel v = { d_value1 = v.v_value1

, d_value2 = v.v_value2

, d_sum = v.v_sum }
Fig. 15. The running sum-example, with trivial view

Fig. 16. 3 Model-View Variations of the sum-example of Fig. 15

counter to see variations and all editable fields as counter fields with one of the
fields itself calculated as a sum of other fields.

In the following sections we show step by step how this can be accomplished.
First, in Sect. 4.1 we show how to construct self-contained editors that take
care of their own update and conversion behavior. In Sect. 4.2 we turn these
self-contained editors into abstract reusable editors, thus encapsulating all infor-
mation about their implementation and behaviour. We show how this is possible

GEC: A Toolkit for Generic Rapid Prototyping 227

although abstract types seem to be at odds with generic programming. Finally,
we show in Sect. 4.3 that these self-contained editors are truly reusable elements
themselves. In that section we will also show (in Fig. 17) how to produce the
variations (given in Fig. 16) of the running example (shown in Fig. 15).

4.1 Defining Self-contained Editors

If we want to reuse an existing editor, it is not enough to reuse its type. We
also want to reuse its functionality: each editor should take care of its own
update. For this purpose we need a type in which we can store the functionality
of an editor. If want to create a view v on a domain model d, we need to be
able to replace a standard editor for type d by a self-contained editor for some
isomorphic view type v. Furthermore, since we generally also have to perform
conversions between these types, we like to store them as well, such that each
editor can take care of its own conversions. Finally, it is generally useful to take
into account the old value of of v when converting from d since editors may
have an internal state. Therefore we define a new type, ViewGEC d v (and a
corresponding creation function mkViewGEC), in which we can store the update
and conversion functions:

:: ViewGEC d v = { d_val :: d
, d_to_v :: d→ (Maybe v) → v
, update_v :: v→ v
, v_to_d :: v→ d }

mkViewGEC :: d (d→ (Maybe b) → v) (v→ v) (v→ d) → ViewGEC d v
mkViewGEC d fdvv fvv fvd

= { d_val = d
, d_to_v = fdvv
, update_v = fvv
, v_to_d = fvd }

For convenience, we define the creation function mkSimpleViewGEC that has a
slightly simpler interface. In Exercise 6 you can practice with the more general
interface for managing state.

mkSimpleViewGEC :: d (d→ v) (v→ v) (v→ d) → ViewGEC d v
mkSimpleViewGEC d fdv fvv fvd = mkViewGEC d fdvv fvv fvd
where fdvv d Nothing = fdv d

fdvv _ (Just v) = v

Next, we define a specialized version of our generic editor gGEC for this type.
The top-level definition is given below. Notice that in gGEC{|ViewGEC|} two ad-
ditional parameters appear: gGECd and gGECv. This is caused by the fact that
generic functions in Clean are kind-indexed functions. As ViewGEC d v is of kind
� → � → �, the generic function has two additional parameters, one for type d
and one for type v.

228 P. Achten et al.

gGEC{|ViewGEC|} gGECd gGECv (vName, viewGEC, viewGECCallback) env
= ({ gecSetValue = viewSetValue vInterface

, gecGetValue = viewGetValue vInterface } , new_env)
where (vInterface,new_env)

= gGECv (vName
, viewGEC.d_to_v viewGEC.d_val Nothing
, viewCallback vInterface
) env

The ViewGEC editor does the following. The value of type d is stored in the
ViewGEC record, but a d-editor (gGECd) for it is not created. Taking the old value
of v into account, the d-value is converted to a v-value using the conversion func-
tion d_to_v :: d→ (Maybe v) → v. For this v-value we do generate a generic
v-editor (gGECv) to store and edit the v-value.

What remains to be defined are the callback function for the view editor
(viewCallback) and the GECInterface (ViewGEC d v) methods (viewSetValue
and viewGetValue). We discuss the most complicated one, the callback func-
tion, first. Whenever the application user creates a new v-value with this ed-
itor, the call-back function of the v-editor is called (viewCallback) and the
update_v :: v→ v function is applied. This is similar to applying (selfGEC
update_v) to the corresponding new value of type v. The resulting new v-value
is shown in the v-editor again, and it is converted back to a d-value as well, using
the function v_to_d :: v→ d. This new d-value is then stored in the ViewGEC
record in the d_val field, and the call-back function for the ViewGEC editor is
called (viewGECCallback).

viewCallback vInterface new_v env
= viewGECCallback {viewGEC & d_val = new_d} new_env

where new_upd_v = viewGEC.update_v new_v
new_env = vInterface.gecSetValue new_upd_v env
new_d = viewGEC.v_to_d new_upd_v

The two interface methods to write (viewSetValue) and read (viewGetValue)
are fairly straightforward. Writing a value of type ViewGEC d v amounts to writ-
ing a value of type v using the current old value of type v and the new value of
type d that is stored in the ViewGEC record. Reading a value of type ViewGEC d v
amounts to reading the current v value and wrap it up in the record after con-
verting it to a d value.

viewSetValue vInterface new_viewGEC env
= vInterface.gecSetValue new_v new_env

where new_v = new_viewGEC.d_to_v new_viewGEC.d_val (Just old_v)
(old_v,new_env) = vInterface.gecGetValue env

viewGetValue vInterface env
= ({viewGEC & d_val = viewGEC.v_to_d current_v} ,new_env)

where (current_v,new_env) = vInterface.gecGetValue env

GEC: A Toolkit for Generic Rapid Prototyping 229

The concrete behavior of the generated ViewGEC editor now not only depends
on the type, but also on the concrete information stored in a value of type
ViewGEC. A self-contained reusable editor, such as counterGEC below, is now
quickly constructed. The corresponding editor takes care of the conversions and
the update. The displayGEC does a trivial update (identity) and also takes care
of the required conversions.

counterGEC :: Int→ ViewGEC Int Counter
counterGEC i = mkViewGEC i toCounter updCntr fromCounter

displayGEC :: a→ ViewGEC a (Display a)
displayGEC x = mkViewGEC x toDisplay id fromDisplay

Making use of these new self-contained editors we can attach a view model to
the data model that was presented in the start of this section by giving appropri-
ate definitions of the conversion functions toMyViewModel and fromMyViewModel.
All other definitions remain the same.

:: MyViewModel = { v_value1 :: ViewGEC Int Counter
, v_value2 :: ViewGEC Int Counter
, v_sum :: ViewGEC Int (Display Int) }

toMyViewModel :: MyDataModel→ MyViewModel
toMyViewModel d = { v_value1 = counterGEC d.d_value1

, v_value2 = counterGEC d.d_value2
, v_sum = displayGEC d.d_sum }

fromMyViewModel :: MyViewModel→ MyDataModel
fromMyViewModel v = { d_value1 = v.v_value1.d_val

, d_value2 = v.v_value2.d_val
, d_sum = v.v_sum.d_val }

In the definition of toMyViewModel we can now choose any suitable self-
contained editor. Each editor handles the needed conversions and updates itself
automatically. To obtain the value we are interested in, we just have to address
the d_val field.

The example shows that we have indeed obtained proper compositional be-
havior but the programming method is not truly compositional. If we would
replace a self-contained editor by another in toMyViewModel, all other code re-
mains the same. However, we do have to change the type of MyViewModel. In this
type it is completely visible what kind of editor has been used. In the following
section it is shown how to create a complete compositional abstraction using a
special abstract data type for our self-contained editors.

4.2 Abstract Self-contained Editors

The concrete value of type ViewGEC d v is used by the generic mechanism to
generate the desired self-contained editors. The ViewGEC d v type depends on

230 P. Achten et al.

the type of the editor v that is being used. Put in other words, the type still
reveals information about the implementation of editor v. This is undesirable for
two reasons: one can not exchange views without changing types, and the type
of composite views reflects their composite structure. For these reasons, a type
is required that abstracts from the concrete editor type v.

However, if we manage to hide these types, how can the generic mechanism
generate the editor for it? The generic mechanism can only generate an editor for
a given concrete type, not for an abstract type of which the content is unknown.
The solution is as follows. When the abstraction is being made, we do know
the contents and its type. Hence, we can store the generic editor function (of
type GECFunction, see Sect. 2) in the abstract data structure itself where the
abstraction is being made. The stored editor function can be applied later when
we really need to construct the editor. Therefore, it is possible to define an
abstract data structure (AGEC d) in which the ViewGEC d v is stored with its
corresponding generic gGEC function for v. Technically this requires a type system
that supports existentially quantified types as well as rank-2 polymorphism.

:: AGEC d
= ∃v: AGEC (ViewGEC d v) (∀ps: GECFunction (ViewGEC d v) (PSt ps))

mkAGEC :: (ViewGEC d v) → AGEC d | gGEC{|�|} v
mkAGEC viewGEC = AGEC viewGEC (gGEC{|� → � → �|} undef gGEC{|�|})

gGEC{|AGEC|} = · · · // similar to gGEC{|ViewGEC|}, but apply function in AGEC

The function mkAGEC creates the desired AGEC given a viewGEC. Looking at
the type of AGEC, the generic system can deduce that the editor to store has to
be a generic editor for type ViewGEC d v. To generate this editor, the generic
system by default requires an editor for type d and type v as well. We know
that in this particular case we do not use the d-editor at all. We can tell this to
the generic system by making use of the fact that generic functions in Clean are
kind indexed. The system allows us, if we wish, to explicitly specify the editors
for type d (undef) and type v (gGEC{|�|}) to be used by the editor for ViewGEC
(gGEC{|� → � → �|}). In this case we know that we do not need an editor for
type d (hence the undef), and use the standard generic editor for type v. The
overloading context restriction in the type of mkAGEC (| gGEC{|�|} v) states that
for making an AGEC d out of a ViewGEC d v only an editor for type v is required.

We also have to define a specialized version of gGEC for the AGEC type. The
corresponding generated editor applies the stored editor to the stored ViewGEC.

The types and kind indexed generic programming features we have used here
may look complicated, but for the programmer an abstract editor is easy to make.
To use a self-contained editor of type v as editor for type d, a ViewGEC d v has
to be defined. Note that the editor for type v is automatically derived for the
programmer by the generic system! The function mkAGEC stores them both into
an AGEC. The functions counterAGEC and displayAGEC show how easy AGEC’s can
be made. One might be surprised that the overloading context for displayAGEC

GEC: A Toolkit for Generic Rapid Prototyping 231

still requires a d-editor (| gGEC{|�|} d). This is caused by the fact that in this
particular case type d is used in the definition of type Display.

counterAGEC :: Int→ AGEC Int
counterAGEC i = mkAGEC (counterGEC i)

displayAGEC :: d→ AGEC d | gGEC{|�|} d
displayAGEC x = mkAGEC (displayGEC x)

We have chosen to export AGEC d as a Clean abstract data type. This implies
that code that uses such an abstract value can not apply record selection to
access the d value. For this purpose we provide the following obvious projection
functions to retrieve the d-value from an AGEC d (^^) and to store a new d-value
in an existing AGEC d (the infix operator ^=).

(^^) :: (AGEC d) → d // Read current value
(^^) (AGEC viewGEC gGEC) = viewGEC.d_val

(^=) infixl :: (AGEC d) d→ (AGEC d) // Set new value
(^=) (AGEC viewGEC gGEC) nval = AGEC {viewGEC & d_val=nval} gGEC

Using abstract editors we can refine the view model data type and conversion
functions:

:: MyViewModel = { v_value1 :: AGEC Int
, v_value2 :: AGEC Int
, v_sum :: AGEC Int }

toMyViewModel :: MyDataModel→ MyViewModel
toMyViewModel d = { v_value1 = counterAGEC d.d_value1

, v_value2 = counterAGEC d.d_value2
, v_sum = displayAGEC d.d_sum }

fromMyViewModel :: MyViewModel→ MyDataModel
fromMyViewModel v = { d_value1 = ^^ v.v_value1

, d_value2 = ^^ v.v_value2
, d_sum = ^^ v.v_sum }

The advantage of the use of the AGEC-type is that, if we want to pick another
editor, we only have to tell which one to pick in the definition of toMyViewModel.
The types used in MyViewModel all remain the same (AGEC Int), no matter which
editor is chosen. Also the definition of fromMyViewModel remains unaffected.

4.3 Abstract Editors Are Compositional

In order to show the compositional nature of abstract editors, we first turn the
running example into an abstract editor: sumAGEC :: AGEC Int. It can be used
itself as an Int-editor. We follow the scheme introduced above:

232 P. Achten et al.

sumAGEC :: Int→ AGEC Int // see counterAGEC (4.2)
sumAGEC i = mkAGEC (sumGEC i)
where sumGEC :: Int→ ViewGEC Int MyViewModel // see counterGEC (4.1)

sumGEC i = mkSimpleViewGEC i toV updV fromV
where toV = toMyViewModel o toMyData

fromV = fromMyData o fromMyViewModel
updV = toMyViewModel o updDataModel o fromMyViewData

toMyData i = {d_value1 = 0, d_value2 = i , d_sum = i}
fromMyData d = d.sum

Now sumAGEC, counterAGEC, and displayAGEC are interchangeable compo-
nents. If we want to experiment with variants of the running example, we pick
the instance of our choice in the toMyViewModel function (in this way achieving
the wanted examples of the beginning of this section: see Fig. 17).

Alternative definition of toMyViewModel: Corresponding GUI:

toMyViewModel1 d

= { v_value1 = idAGEC d.d_value1

, v_value2 = idAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

toMyViewModel2 d

= { v_value1 = idAGEC d.d_value1

, v_value2 = counterAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

toMyViewModel3 d

= { v_value1 = counterAGEC d.d_value1

, v_value2 = sumAGEC d.d_value2

, v_sum = displayAGEC d.d_sum }

Fig. 17. Plug-and-play your favorite abstract editors. The only code that changes is

the function toMyViewModel. The values have been edited by the user.

We have set up a library of abstract components. One of these library func-
tions idAGEC (which takes a value of any type and promotes it to an abstract
editor component for that type) is used in the example above. With this library
it is possible to rapidly create GUIs in a declarative style. This is useful e.g. for
prototyping, education, tracing and debugging purposes.

Below, we summarize only those functions of the collection that are used in
the examples in these notes:

GEC: A Toolkit for Generic Rapid Prototyping 233

vertlistAGEC :: [a] → AGEC [a] | gGEC{|�|} a
// all elements displayed in a column

counterAGEC :: a → AGEC a | gGEC{|�|} , IncDec a
// a special number editor

hidAGEC :: a → AGEC a // identity, no editor
displayAGEC :: a → AGEC a | gGEC{|�|} a // identity, non-editable editor

Exercise 6. Abstract Lists (advanced). Modify the solution of Exercise 2
in such a way that it is an abstract editor for lists. Make use of the general
mkViewGEC function that manipulates the state of the view.

Exercise 7. Abstract Intelligent Form. Experiment with your solution for
Exercise 4. Replace parts of it by AGECs and experiment with different editors
at the basic level.

5 Higher-Order GECs

In the previous sections all functionality had to be encoded in the program. A
user could only edit data values, no functions.

In this section we explain how basic GECs have been extended with the
ability to deal with functions and expressions allowing the user to edit functional
values.

Consider as a motivating example the running example of the previous sec-
tion. It had the function sum encoded in the program. In order to change it to
product e.g. the user would have to ask a programmer to change the program. Of
course, a user would prefer to have the ability to change (and add) functionality.

A user would like to be able to type in expressions using e.g. twice and map
and let the GEC react accordingly. In Fig. 18 we show how such an editor could
look like. On the left there is a GEC in which a user has typed in a partial
application of the map function, on the right the twice function has been used.

Looking carefully one can imagine that it is not an easy task to achieve such
functionality. Depending on what functional value is typed in, the number of
other fields will vary.

Suppose the expression field is the twice function λf x→ f (f x) as in the
right example of Fig. 18. If the first argument is the increment function ((+) 1),

Fig. 18. Two GECs editing functional values

234 P. Achten et al.

there is one further argument, an Int, and of course a field for the result. How-
ever, if the first argument would also be the twice function then an extra argu-
ment would be required!

The number of argument fields depend on the type of the functional value
that is typed in by the user (or of the actual arguments that are given to it by
the user). These examples of Fig. 18 are created in the sections below.

Because functions are opaque, the solution requires a means of interpreting
functional expressions as functional values. Instead of writing our own parser/in-
terpreter/type inference system we use the Esther shell [24]. Esther enables the
user to enter expressions (using a subset of Clean) that are dynamically typed,
and transformed to values and functions using compiled code. It is also possible
to reuse earlier created functions, which are stored on disk. Its implementation
relies on the dynamic type system [1,21,25] of Clean.

The shell uses a text-based interface, and hence it makes sense to create a
special string-editor (Sect. 5.1), which converts any string into the corresponding
dynamically typed value. This special editor has the same power as the Esther
command interpreter and can deliver any dynamic value, including higher-order
polymorphic functions. In addition we show that the actual content of a dy-
namic value can be influenced by the very same generic mechanism, using type
dependent functions (Sect. 5.2). With this mechanism, dynamics can be used in
a type-directed way, but only for monomorphic types in dynamics.

5.1 Dynamically Typed Higher-Order GECs

We first introduce the foundations of the Esther shell, and proceed by showing
how to construct an editor for functions.

Dynamics in Clean. A dynamic is a value of static type Dynamic, which contains
an expression as well as a representation of its static type, e.g., dynamic 42 ::
Int, dynamic map fst :: ∀a b: [(a , b)] → [a] . Basically, dynamic types turn
every (first and higher-order) type into a first-order type, while providing run-
time access to the original type and value.

Function alternatives and case patterns can match on values of type Dynamic.
Such a pattern match consists of a value pattern and a type pattern, e.g., [4 , 2]
:: [Int] . The compiler translates a pattern match on a type into run-time type
unification. If the unification is successful, type variables in a type pattern are
bound to the offered type. Applying dynamics at run-time will be used to create
an editor that changes according to the type of entered expressions (Sect. 5.1,
Example 2).

dynamicApply :: Dynamic Dynamic→ Dynamic
dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b
dynamicApply df dx = dynamic ”Error” :: String

dynamicApply tests if the argument type of the function f, inside its first
argument, can be unified with the type of the value x, inside the second argument.
dynamicApply can safely apply f to x, if the type pattern match succeeds. It yields

GEC: A Toolkit for Generic Rapid Prototyping 235

a value of the type that is bound to the type variable b by unification, wrapped
in a dynamic. If the match fails, it yields a string in a dynamic.

Type variables in type patterns can also relate to type variables in the static
type of a function. A ^ behind a variable in a pattern associates it with the same
type variable in the static type of the function.

matchDynamic :: Dynamic→ t | TC t
matchDynamic (x :: t^) = x

The static type variable t, in the example above, is determined by the static
context in which it is used, and imposes a restriction on the actual type that is
accepted at run-time by matchDynamic. The function becomes overloaded in the
predefined TC (type code) class. This makes it a type dependent function [21].

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another program or during another execu-
tion of the same program. This provides a means of type safe communication,
the ability to use compiled plug-ins in a type safe way, and a rudimentary basis
for mobile code. The dynamic is read in lazily after a successful run-time unifi-
cation. The amount of data and code that the dynamic linker links is, therefore,
determined by the evaluation of the value inside the dynamic.

writeDynamic :: String Dynamic env→ (Bool,env) | FileSystem env
readDynamic :: String env→ (Bool,Dynamic,env) | FileSystem env

Programs, stored as dynamics, have Clean types and can be regarded as a
typed file system. We have shown that dynamicApply can be used to type check
any function application at run-time using the static types stored in dynamics.
Combining both in an interactive ‘read expression – apply dynamics – evaluate
and show result’ loop, already gives a simple shell that supports the type checked
run-time application of programs to documents. The composeDynamic function
below, taken from the Esther shell, applies dynamics and infers the type of an
expression.

composeDynamic :: String env→ (Dynamic,env) | FileSystem env
showValueDynamic :: Dynamic→ String

composeDynamic expr env parses expr. Unbound identifiers in expr are re-
solved by reading them from the file system. In addition, overloading is resolved.
Using the parse tree of expr and the resolved identifiers, the dynamicApply func-
tion is used to construct the (functional) value v and its type τ . These are packed
in a dynamic v :: τ and returned by composeDynamic. In other words, if env �
expr :: τ and [[expr]]env = v then composeDynamic expr env = (v :: τ , env). The
showValueDynamic function yields a string representation of the value inside a
dynamic.

Creating a GEC for the Type Dynamic. With the composeDynamic func-
tion, an editor for dynamics can be constructed. This function needs an appro-
priate environment to access the dynamic values and functions (plug-ins) that
are stored on disk. The standard (PSt ps) environment used by the generic

236 P. Achten et al.

gGEC function (Sect. 2) is such an environment. This means that we can use
composeDynamic in a specialized editor to offer the same functionality as the
command line interpreter. Instead of Esther’s console we use a String editor as
interface to the application user. In addition we need to convert the provided
string into the corresponding dynamic. We therefore define a composite data
type DynString and a specialized gGEC-editor for this type (a GECDynString) that
performs the required conversions.

:: DynString = DynStr Dynamic String

The choice of the composite data type is motivated mainly by simplicity
and convenience: the string can be used by the application user for typing in
the expression. It also stores the original user input, which cannot be extracted
from the dynamic when it contains a function.

Now we specialize gGEC for this type DynString. The complete definition of
gGEC{|DynString|} is given below.

gGEC{|DynString|} (gui,DynStr _ expr,dynStringUpd) env
(stringGEC,env) = gGEC{|�|} (gui,expr,stringUpd dynStringUpd) env
= ({ gecSetValue = dynSetValue stringGEC.gecSetValue

, gecGetValue = dynGetValue stringGEC.gecGetValue } ,env)
where dynSetValue stringSetValue (DynStr _ expr) env

= stringSetValue expr env
dynGetValue stringGetValue env

(nexpr,env) = stringGetValue env
(ndyn, env) = composeDynamic nexpr env
= (DynStr ndyn nexpr,env)

stringUpd dynStringUpd nexpr env
(ndyn,env) = composeDynamic nexpr env
= dynStringUpd (DynStr ndyn nexpr) env

The created GECDynString displays a box for entering a string by calling the
standard generic gGEC{|�|} function for the value expr of type String, yield-
ing a stringGEC. The DynString-editor is completely defined in terms of this
String-editor. It only has to take care of the conversions between a String
and a DynString. This means that its gecSetValue method dynSetValue sets
the string component of a new DynString in the underlying String-editor. Its
gecGetValue method dynGetValue retrieves the string from the String-editor,
converts it to the corresponding Dynamic by applying composeDynamic, and com-
bines these two values in a DynString-value. When a new string is created by
the application user, this will call the callback function stringUpd. It invokes
the callback function dynStringUpd (provided as an argument upon creation of
the DynString-editor), after converting the String to a DynString.

It is convenient to define a constructor function mkDynStr that converts any
input expr, that has value v of type τ , into a value of type DynString guaran-
teeing that if v :: τ and [[expr]] = v, then (DynStr (v::τ) expr) :: DynString.

mkDynStr :: a→ DynString | TC a
mkDynStr x = let dx = dynamic x in DynStr dx (showValueDynamic dx)

GEC: A Toolkit for Generic Rapid Prototyping 237

Function Test Example. We construct an interactive editor that can be used
to test functions. It can be a newly defined function, say λx→ x^2, or any existing
function stored on disk as a Dynamic. Hence the tested function can vary from a
small function, say factorial, to a large complete application.

:: MyRecord = { function :: DynString
, argument :: DynString
, result :: DynString }

myEditor
= selfGEC ”test” guiApply (initval id 0)
where
initval f v
= { function = mkDynStr f

, argument = mkDynStr v
, result = mkDynStr (f v) }

guiApply
r=:18{ function = DynStr (f::a→ b) _

, argument = DynStr (v::a) _ }
= {r & result = mkDynStr (f v)}

guiApply r = r

MyRecord has three DynString fields: function, argument, and result. The
user can use this editor to enter a function definition and its argument. The
selfGEC function ensures that each time a new string is created with the editor
”test”, the function guiApply is applied that provides a new value of type
MyRecord to the editor. The function guiApply tests, in a similar way as the
function dynamicApply (see Sect. 5.1), whether the type of the supplied function
and argument match. If so, a new result is calculated. If not, nothing happens.

This editor can only be used to test functions with one argument. What hap-
pens if we edit the function and the argument in such a way that the result is
not a plain value but a function itself? Take, e.g., as function the twice function
λf x→ f (f x), and as argument the increment function ((+) 1). Then the re-
sult is also a function λx→ ((+) 1) ((+) 1 x). The editor displays <function>
as result. There is no way to pass an argument to the resulting function.

With an editor like the one above, the user can enter expressions that are
automatically converted into the corresponding Dynamic value. As in the shell,
unbound names are expected to be dynamics on disk. Illegal expressions result
in a Dynamic containing an error message.

To have a properly higher-order dynamic application example one needs an
editor in which the user can type in functions of arbitrary arity, and subse-
quently enter arguments for this function. The result is then treated such that,
if it is a function, editors are added dynamically for the appropriate number of
arguments. This is explained in the following example.

18 x =:e binds x to e.

238 P. Achten et al.

Expression Test Example. We construct a test program that accepts arbi-
trary expressions and adds the proper number of argument editors, which again
can be arbitrary expressions. The number of arguments cannot be statically de-
termined and has to be recalculated each time a new value is provided. Instead
of an editor for a record we therefore create an editor for a list of tuples. Each
tuple consists of a string used to prompt to the user, and a DynString-value.
The tuple elements are displayed below each other using the predefined list ed-
itor vertlistAGEC (Sect. 4.3) and access operator ^^ (Sect. 4.2). The selfGEC
function is used to ensure that each change made with the editor is tested with
the guiApply function and the result is shown in the editor.

myEditor
= selfGEC ”test” (guiApply o (^^))

(vertlistAGEC [show ”expression ” 0])
where
guiApply [df=:(_ ,DynStr f _):args]
= vertlistAGEC [df:check f args]

where
check (f::a→ b)

[arg=:(_ ,DynStr (x::a) _):args]
= [arg : check (dynamic f x) args]

check (f::a→ b) _
= [show ”argument ” ”??”]

check (x::a) _
= [show ”result ” x]

show s v = (Display s ,mkDynStr v)

The key part of this example is formed by the function check which calls
itself recursively on the result of the dynamic application. As long as function
and argument match, and the resulting type is still a function, it requires another
argument which is checked for type consistency. If the resulting type is a plain
value, it is evaluated and shown using the predefined function display, which
creates a non-editable editor that just displays its value. As soon as a type
mismatch is detected, a question mark is displayed to prompt the user to try
again. With this editor, any higher-order polymorphic function can be entered
and tested.

5.2 Statically Typed Higher-Order GECs

The editors presented in the previous section are flexible because they deliver a
Dynamic (packed into the type DynString). They have the disadvantage that the
programmer has to program a check, such as the check function in the previous
example, on the type consistency of the resulting Dynamics.

In many applications it is statically known what the type of a supplied func-
tion must be. In this section we show how the run-time type check can be replaced
by a compile-time check, using the abstraction mechanism for GECs. This gives

GEC: A Toolkit for Generic Rapid Prototyping 239

the programmer a second solution for higher-order types that is statically typed,
which allows, therefore, type-directed generic GUI creation.

Adding Static Type Constraints to Dynamic GECs. The abstraction
mechanism provided by AGECs is used to build type-directed editors for higher-
order types, which check the type of the entered expressions dynamically. These
statically typed higher-order editors are created using the function dynamicAGEC.
The full definition of this function is specified and explained below.

dynamicAGEC :: d→ AGEC d | TC d
dynamicAGEC x

= mkAGEC (mkSimpleViewGEC x toView (updView x) (fromView x))
where

toView :: d→ (DynString,AGEC DynString)
toView newx = let dx = mkDynStr newx in (dx ,hidAGEC dx)

fromView :: d (DynString,AGEC DynString) → d | TC d
fromView _ (_ ,oldx) = case ^^oldx of DynStr (x::d^) _→ x

updView :: d (DynString,AGEC DynString)
→ (DynString,AGEC DynString) | TC d

updView _ (newx=:(DynStr (x::d^) _) ,_) = (newx,hidAGEC newx)
updView _ (_ ,oldx) = (^^oldx,oldx)

The abstract Dynamic editor, which is the result of the function dynamicAGEC
initially takes a value of some statically determined type d. It converts this value
into a value of type DynString, such that it can be edited by the application
user as explained in Sect. 5.1. The application user can enter an expression of
arbitrary type, but now it is ensured that only expressions of type d are approved.

The function updView, which is called in the abstract editor after any edit
action, checks, using a type pattern match, whether the newly created dynamic
can be unified with the type d of the initial value (using the ^-notation in the
pattern match as explained in Sect. 5.1). If the type of the entered expression
is different, it is rejected and the previous value is restored and shown. To do
this, the abstract editor has to remember in its internal state also the previously
accepted correctly typed value. Clearly we do not want to show this part of the
internal state to the application user. This is achieved using the abstract editor
hidAGEC (Sect. 4.3), which creates an invisible editor, i.e., a store, for any type.

Function Test Example, Revisited. Consider the following variation of the
function test example on page 237:

:: MyRecord a b = { function :: AGEC (a→ b)
, argument :: AGEC a
, result :: AGEC b }

240 P. Achten et al.

myEditor = selfGEC ”test” guiApply (initval ((+) 1.0) 0.0)
where

initval f v
= { function = dynamicAGEC f

, argument = dynamicAGEC v
, result = displayAGEC (f v) }

guiApply myrec=:{ function = af , argument = av }
= {myrec & result = displayAGEC ((^^af) (^^av))}

The editor above can be used to test functions of a certain statically de-
termined type. Due to the particular choice of the initial values ((+) 1.0 ::
Real→ Real and 0.0 :: Real), the editor can only be used to test functions
of type Real→ Real applied to arguments of type Real. Notice that it is now
statically guaranteed that the provided dynamics are correctly typed. At run-
time the dynamicAGEC-editors take care of the required checks and they reject
ill-typed expressions. The programmer therefore does not have to perform any
checks anymore. The abstract dynamicAGEC-editor delivers a value of the proper
type just like any other abstract editor.

The code in the above example is not only simple and elegant, but it is
also very flexible. The dynamicAGEC abstract editor can be replaced by any other
abstract editor, provided that the statically derived type constraints (concerning
f and v) are met. This is illustrated by the next example.

Function Test Example, Once Again Revisited. If one prefers a counter
as input editor for the argument value, one only has to replace dynamicAGEC by
counterAGEC in the definition of initval:

initval f v
= { function = dynamicAGEC f

, argument = counterAGEC v
, result = displayAGEC (f v) }

The dynamicAGEC is typically used when expression editors are preferred over
value editors of a type, and when application users need to be able to enter
functions of a statically fixed monomorphic type.

One can create an editor for any higher-order type t, even if it contains poly-
morphic functions. It is required that all higher-order parts of t are abstracted,
by wrapping them with an AGEC type. Basically, this means that each part of t
of the form a→ b must be changed into AGEC (a→ b). For the resulting type t ’
an edit dialog can be automatically created, e.g., by applying selfGEC. However,
the initial value that is passed to selfGEC must be monomorphic, as usual for
any instantiation of a generic function. Therefore, editors for polymorphic types
cannot be created automatically using this statically typed generic technique.
As explained in Sect. 5.1 polymorphic types can be handled with dynamic type
checking.

GEC: A Toolkit for Generic Rapid Prototyping 241

Summarizing, we have shown two ways to create editors that can deal with
higher order types. Firstly, one can create dynamically typed higher-order edi-
tors, which have the advantages that we can deal with polymorphic higher order
types and overloading. This has the disadvantage that the programmer has to
check type safety in the editor. Secondly, we have treated a method in which the
compiler can ensure type correctness of higher-order types in statically typed
editors, but then the resulting editors can only edit monomorphic types.

Exercise 8. Dynamically Adaptable Intelligent Form. Change your so-
lutions from exercises 4 and 7 such that the intelligence can be dynamically
changed by typing in the function that is applied.

6 Related Work

We distinguish three areas of related work:

Grammars Instead of Types: Taking a different perspective on the type-
directed nature of our approach, one can argue that it is also possible to obtained
editors by starting from a grammar specification instead of a type. Such toolkits
require a grammar as input and yield an editor GUI as result. Projects in this fla-
vor are for instance the recent Proxima project [23], which relies on XML and its
DTD (Document Type Definition language), and the Asf+Sdf Meta-Environment
[11] which uses an Asf syntax specification and Sdf semantics specification. The
major difference with such an approach is that these systems need both a gram-
mar and some kind of interpreter. In our system higher-order elements are im-
mediately available as a functional value that can be applied and passed to other
components.

GUI Programming Toolkits: From the abstract nature of the GEC toolkit it
is clear that we need to look at GUI toolkits that also offer a high level of abstrac-
tion. Most GUI toolkits are concerned with the low level management of widgets
in an imperative style. One well-known example of an abstract, compositional
GUI toolkit based on a combinator library is Fudgets [12]. These combinators
are required for plumbing when building complex GUI structures from simpler
ones. In our system far less plumbing is needed. Most work is done automat-
ically by the generic function gGEC. The only plumbing needed in our system
is for combining the GEC-editors themselves. Any application will only have a
very limited number of GEC-editors. Furthermore, the Fudget system does not
provide support for editing function values or expressions.

A GECt is a t-stateful object, hence it makes sense to look at object oriented
approaches. The power of abstraction and composition in our functional frame-
work is similar to mixins [13] in object oriented languages. One can imagine an
OO GUI library based on compositional and abstract mixins in order to obtain
a similar toolkit. Still, such a system lacks higher-order data structures.

242 P. Achten et al.

Visual Programming Languages: Due to the extension of the GEC pro-
gramming toolkit with higher-order types, visual programming languages have
come within reach as application domain. One interesting example is the Vital
system [14] in which Haskell-like scripts can be edited. Both systems allow direct
manipulation of expressions and custom types, allow customization of views,
and have guarded data types (the selfGEC function). In contrast with the Vital
system, which is a dedicated system and has been implemented in Java, our sys-
tem is a general purpose toolkit. We could use our toolkit to construct a visual
environment in the spirit of Vital.

7 Conclusions

We have presented the GEC toolkit for rapid prototyping of type safe interactive
applications. The toolkit

1. produces type-safe interactive applications composed from Graphical Editor
Components;

2. is highly automatic due to generic generative programming techniques;
3. can be used for first order and higher order types;
4. can be customized to create any kind of user interface;
5. allows abstraction using model-view programming to hide details and allow

type-safe view changes;
6. is compositional on various levels:

Types standard composition of types lead to composition of corresponding
graphical editor components;

Expressions the user can enter expressions in which values and functions
can be defined/used compositionally; these functions can even be com-
piled functions (possibly taken from complete applications) that are read
from disk, linked in dynamically and applied in a compositional way;

GECs GECs can be composed in an ad-hoc way by standard functional
programming or in a structured way using arrow combinators;

AGECs AGECs can be composed in a statically type safe way.
7. enables the programmer to focus on a data type representing the interaction

with the user instead of on the many nasty details of a graphical toolkit;
8. can be downloaded from http://www.cs.ru.nl/∼clean/gec.

Acknowledgements

The authors would like to thank the referees for their detailed comments.

References

1. M. Abadi, L. Cardelli, B. Pierce, G. Plotkin, and D. Rèmy. Dynamic typing in
polymorphic languages. In Proc. of the ACM SIGPLAN Workshop on ML and its
Applications, San Francisco, June 1992.

GEC: A Toolkit for Generic Rapid Prototyping 243

2. P. Achten. Interactive Functional Programs - models, methods, and implementa-
tions. PhD thesis, University of Nijmegen, The Netherlands, 1996.

3. P. Achten and S. Peyton Jones. Porting the Clean Object I/O library to Haskell.
In M. Mohnen and P. Koopman, editors, Proc. of the 12th International Workshop
on the Implementation of Functional Languages, IFL’00, Selected Papers, volume
2011 of LNCS, pages 194–213. Aachen, Germany, Springer, Sept. 2001.

4. P. Achten and R. Plasmeijer. Interactive Functional Objects in Clean. In C. Clack,
K. Hammond, and T. Davie, editors, Proc. of the 9th International Workshop on
the Implementation of Functional Languages, IFL 1997, Selected Papers, volume
1467 of LNCS, pages 304–321. St.Andrews, UK, Springer, Sept. 1998.

5. Achten, Peter and van Eekelen, Marko and Plasmeijer, Rinus and van
Weelden, Arjen. Arrows for Generic Graphical Editor Components. Tech-
nical report NIII-R0416, Nijmegen Institute for Computing and Informa-
tion Sciences, University of Nijmegen, The Netherlands, 2004. available at
http://www.niii.kun.nl/research/reports/full/NIII-R0416.pdf.

6. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Generic Graphical User
Interfaces. In Greg Michaelson and Phil Trinder, editors, Selected Papers of the 15th
Int. Workshop on the Implementation of Functional Languages, IFL03, volume
3145 of LNCS. Edinburgh, UK, Springer, 2003.

7. Achten, Peter, van Eekelen, Marko and Plasmeijer, Rinus. Compositional Model-
Views with Generic Graphical User Interfaces. In Practical Aspects of Declarative
Programming, PADL04, volume 3057 of LNCS, pages 39–55. Springer, 2004.

8. Achten, Peter, van Eekelen, Marko, Plasmeijer, Rinus and van Weelden, Arjen.
Automatic Generation of Editors for Higher-Order Data Structures. In Wei-Ngan
Chin, editor, Second ASIAN Symposium on Programming Languages and Systems
(APLAS 2004), volume 3302 of LNCS, pages 262–279. Springer, 2004.

9. A. Alimarine and R. Plasmeijer. A Generic Programming Extension for Clean.
In T. Arts and M. Mohnen, editors, The 13th International workshop on the Im-
plementation of Functional Languages, IFL’01, Selected Papers, volume 2312 of
LNCS, pages 168–186. Älvsjö, Sweden, Springer, Sept. 2002.

10. E. Barendsen and S. Smetsers. Graph Rewriting Aspects of Functional Program-
ming, chapter 2, pages 63–102. World scientific, 1999.

11. M. v. d. Brand, A. van Deursen, J. Heering, H. de Jong, M. de Jonge, T. Kuipers,
P. Klint, L. Moonen, P. Olivier, J. Scheerder, J. Vinju, E. Visser, and J. Visser. The
Asf+Sdf Meta-Environment: a Component-Based Language Development Environ-
ment. In R. Wilhelm, editor, Compiler Construction 2001 (CC’01), pages 365–370.
Springer-Verlag, 2001.

12. M. Carlsson and T. Hallgren. Fudgets - a graphical user interface in a lazy
functional language. In Proc. of the ACM Conference on Functional Programming
and Computer Architecture, FPCA ’93, Kopenhagen, Denmark, 1993.

13. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In The 25TH
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL98), pages 171–183, San Diego, California, 1998. ACM, New York, NY.

14. K. Hanna. Interactive Visual Functional Programming. In S. P. Jones, editor, Proc.
Intnl Conf. on Functional Programming, pages 100–112. ACM, October 2002.

15. R. Hinze. A new approach to generic functional programming. In The 27th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 119–132. Boston, Massachusetts, January 2000.

16. R. Hinze and S. Peyton Jones. Derivable Type Classes. In G. Hutton, editor, 2000
ACM SIGPLAN Haskell Workshop, volume 41(1) of ENTCS. Montreal, Canada,
Elsevier Science, 2001.

244 P. Achten et al.

17. J. Hughes. Generalising Monads to Arrows. Science of Computer Programming,
37:67–111, May 2000.

18. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller user
interface paradigm in Smalltalk-80. Journal of Object-Oriented Programming,
1(3):26–49, August 1988.

19. A. Löh, D. Clarke, and J. Jeuring. Dependency-style generic haskell. In ICFP
’03: Proc. of the eighth ACM SIGPLAN international conference on Functional
programming, pages 141–152. ACM Press, 2003.

20. S. Peyton Jones and Hughes J. et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/.

21. M. Pil. Dynamic types and type dependent functions. In K. Hammond, T. Davie,
and C. Clack, editors, Implementation of Functional Languages (IFL ’98), LNCS,
pages 169–185. Springer Verlag, 1999.

22. R. Plasmeijer and M. van Eekelen. Concurrent CLEAN Language Report (version
2.0), December 2001. http://www.cs.kun.nl/∼clean/contents/contents.html.

23. M. Schrage. Proxima, a presentation-oriented editor for structured documents. PhD
thesis, University of Utrecht, 2004.

24. A. van Weelden and R. Plasmeijer. A functional shell that dynamically combines
compiled code. In P. Trinder and G. Michaelson, editors, Selected Papers Proc.
of the 15th International Workshop on Implementation of Functional Languages,
IFL’03. Heriot Watt University, Edinburgh, Sept. 2003.

25. M. Vervoort and R. Plasmeijer. Lazy dynamic input/output in the lazy functional
language Clean. In R. Peña and T. Arts, editors, The 14th International Workshop
on the Implementation of Functional Languages, IFL’02, Selected Papers, volume
2670 of LNCS, pages 101–117. Springer, Sept. 2003.

26. P. Wadler. Comprehending Monads. In Proc. of the 1990 ACM Conference on
Lisp and Functional Programming, pages 61–77, Nice, France, 1990.

A Functional Shell That Operates

on Typed and Compiled Applications

Rinus Plasmeijer and Arjen van Weelden

Nijmeegs Instituut voor Informatica en Informatiekunde,
Radboud Universiteit Nijmegen, Toernooiveld 1,

6525 ED Nijmegen, The Netherlands
{rinus, arjenw}@cs.kun.nl

Abstract. Esther is the interactive shell of Famke, a prototype imple-
mentation of a strongly typed operating system written in the functional
programming language Clean. As usual, the shell can be used for ma-
nipulating files, applications, data and processes at the command line.
A special feature of Esther is that the shell language provides the basic
functionality of a strongly typed lazy functional language, at the com-
mand line. The shell type checks each command line and only executes
well-typed expressions. Files are typed as well, and applications are sim-
ply files with a function type.

The type checking/inferencing performed by the shell is actually per-
formed by the hybrid static/dynamic type system of Clean. The shell
behaves like an interpreter, but it actually executes a command line by
combining existing compiled code of functions/programs on disk. Clean’s
dynamic linker is used to store (and retrieve) any expression (both data
and code) with its type on disk. This linker is also used to communi-
cate values of any type, e.g., data, closures, and functions (i.e., compiled
code), between running applications in a type safe way.

The shell combines the advantages of interpreters (direct response)
and compilers (statically typed, fast code). Applications (compiled func-
tions) can be used, in a type safe way, in the shell, and functions defined
in the shell can be used by any compiled application.

1 Introduction

Functional programming languages like Haskell [1] and Clean [2,3] offer a very
flexible and powerful static type system. Compact, reusable, and readable pro-
grams can be written in these languages while the static type system is able
to detect many programming errors at compile time. However, this works only
within a single application.

Independently developed applications often need to communicate with each
other. One would like the communication of objects to take place in a type
safe manner as well. And not only simple objects, but objects of any type,
including functions. In practice, this is not easy to realize: the compile time type
information is generally not available to the compiled executable at run-time. In

245–272, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

246 R. Plasmeijer and A. van Weelden

real life therefore, applications often only communicate simple data types like
streams of characters, ASCII text, or use some ad-hoc defined (binary) format.

Programming languages, especially pure and lazy functional languages like
Clean and Haskell, provide good support for abstraction (e.g., subroutines, over-
loading, polymorphic functions), composition (e.g., application, higher-order
functions, module system), and verification (e.g., strong type checking and in-
ference). In contrast, command line languages used by operating system shells
usually have little support for abstraction, composition, and especially verifica-
tion. They do not provide higher-order subroutines, complex data structures,
type inference, or type checking before evaluation. Given their limited set of
types and their specific area of application (in which they have been, and still
are, very successfull), this is not experienced as a serious problem.

Nonetheless, we think that command line languages can benefit from some
of the programming language facilities, as this will increase their flexibility,
reusability, and security. We have previously done research on reducing run-
time errors (e.g., memory access violations, type errors) in operating systems by
implementing a micro kernel in Clean that provides type safe communication of
any value of any type between functional processes, called Famke (FunctionAl
M icro K ernel Experiment) [4]. This has shown that (moderate) use of dynamic
typing [5], in combination with Clean’s dynamic run-time system and dynamic
linker [6,7], enables processes to communicate any data (and even code) of any
type in a type safe way.

During the development of a shell/command line interface for our prototype
functional operating system it became clear that a normal shell cannot really
make use (at run-time) of the type information derived by the compiler (at
compile-time). To reduce the possibility of run-time errors during execution of
scripts or command lines, we need a shell that supports abstraction and verifi-
cation (i.e., type checking) in the same way as the Clean compiler does. In order
to do this, we need a better integration of compile-time (i.e., static typing) and
run-time (i.e., interactivity) concepts.

Both the shell and micro kernel are built on top of Clean’s hybrid static/dy-
namic type system and its dynamic I/O run-time support. It allows programmers
to save any Clean expression, i.e., a graph that can contain data, references to
functions, and closures, to disk. Clean expressions can be written to disk as
a dynamic, which contains a representation of their (polymorphic) static type,
while preserving sharing. Clean programs can load dynamics from disk and use
run-time type pattern matching to reintegrate it into the statically typed pro-
gram. In this way, new functionality (e.g., plug-ins) can be added to a running
program in a type safe way. This paper stresses type safety and assumes that
we can trust the compiler.

The shell is called Esther (Extensible Shell with Type cH ecking
ExpeRiment), and is capable of:

– reading an expression from the console, using Clean’s syntax for a basic,
but complete, functional language. It offers application, lambda abstraction,
recursive let, pattern matching, function definitions, and even overloading;

A Functional Shell That Operates on Typed and Compiled Applications 247

– using compiled Clean programs as typed functions at the command line;
– defining new functions, which can be used by other compiled Clean programs

(without using the shell or an interpreter);
– extracting type information (and indirectly, code) from dynamics on disk;
– type checking the expression and resolving overloading, before evaluation;
– constructing a new dynamic containing the correct type and code of the

expression.

1.1 Esther Example: An Application That Uses a Shell Function

Figure 1 shows a sequence of screenshots of a calculator program written in
Clean. Initially, the calculator has no function buttons. Instead, it has buttons
to add and remove function buttons. These will be loaded dynamically after
adding dynamics that contain tuples of String and Real Real→ Real.

The lower half of Fig. 1 shows a command line in the Esther shell that writes
such a tuple as a dynamic named “2a-b2.u.dyn” to disk.

Its button name is 2*a-b^2 and the function is λa b→ 2.0 * a − b * b.
Pressing the Add button on the calculator opens a file selection dialog, shown
at the bottom of Fig. 1. After selecting the dynamic named “2a-2b.u.dyn”, it
becomes available in the calculator as the button 2*a-b^2, and it is applied to
8 and 3 yielding 7.

Fig. 1. A combined screenshot of the calculator and Esther in action

248 R. Plasmeijer and A. van Weelden

The calculator itself is a separately compiled Clean executable that runs
without using Esther. Alternatively, one can write the calculator, which has
type [(String, Real Real→ Real)] *World→ *World, to disk as a dynamic.
The calculator can then be started from Esther, either in the current shell or as
a separate process.

1.2 Overview

First, we introduce the static/dynamic hybrid type system and dynamic I/O
of Clean in Sect. 2. The type checking and combining of compile code features
of Esther are directly derived from Clean’s dynamic implementation. In Sect.
3 we give an overview of the expressive power of the shell command language
using tiny examples of commands that can be given. In Sect. 4 we show how
to construct a dynamic for each kind of subexpression such that it has the
correct semantics and type, and how to compose them in a type checked way.
Related work is discussed in Sect. 5 and we conclude and mention future re-
search in Sect. 6. We assume the reader to be familiar with Haskell, and will
indicate syntactic difference with Clean in footnotes. The implementation has
been done in Clean because it has more support for (de)serializing dynamics
than Haskell. Unfortunately, Clean’s dynamic linker, which is required for Es-
ther, has only been implemented for Microsoft Windows. The implementation,
which is reasonably stable but always under development, can be downloaded
from: http://www.cs.ru.nl/∼arjenw.

2 Dynamics in Clean

Clean offers a hybrid type system: in addition to its static type system it also has
a (polymorphic) dynamic type system [5,6,7]. A dynamic in Clean is a value of
static type Dynamic, which contains an expression as well as a representation of
the (static) type of that expression. Dynamics can be formed (i.e., lifted from the
static to the dynamic type system) using the keyworddynamic in combination with
the value and an optional type. The compiler will infer the type if it is omitted1.

dynamic 42 :: Int2

dynamic map fst :: A3.a b: [(a , b)] → [a]

Function alternatives and case patterns can pattern match on values of type
Dynamic, i.e., bring them from the dynamic back into the static type system.
Such a pattern match consist of a value pattern and a type pattern. In the
example below, matchInt returns Just the value contained inside the dynamic if
it has type Int; and Nothing if it has any other type. The compiler translates a
pattern match on a type into run-time type unification. If the unification fails,
the next alternative is tried, as in a common (value) pattern match.
1 Types containing universally quantified variables are currently not inferred by the

compiler. We will sometimes omit these types for ease of presentation.
2 Numerical denotations are not overloaded in Clean.
3 Clean’s syntax for Haskell’s forall.

A Functional Shell That Operates on Typed and Compiled Applications 249

::4Maybe a = Nothing | Just a

matchInt :: Dynamic→ Maybe Int
matchInt (x :: Int) = Just x
matchInt other = Nothing

A type pattern can contain type variables which, provided that run-time uni-
fication is successful, are bound to the offered type. In the example below,
dynamicApply tests if the argument type of the function f inside its first ar-
gument can be unified with the type of the value x inside the second argument.
If this is the case then dynamicApply can safely apply f to x. The type variables
a and b will be instantiated by the run-time unification. At compile time it is
generally unknown what type a and b will be, but if the type pattern match
succeeds, the compiler can safely apply f to x. This yields a value with the type
that is bound to b by unification, which is wrapped in a dynamic.

dynamicApply :: Dynamic Dynamic→ Dynamic5

dynamicApply (f :: a→ b) (x :: a) = dynamic f x :: b6

dynamicApply df dx = dynamic ”Error: cannot apply”

Type variables in dynamic patterns can also relate to a type variable in the
static type of a function. Such functions are called type dependent functions [5].
A caret (^) behind a variable in a pattern associates it with the type variable
with the same name in the static type of the function. The static type variable
then becomes overloaded in the predefined TC (or type code) class. The TC class is
used to ‘carry’ the type representation. The compiler generates instances for this
class, which contain the necessary methods to convert values to dynamics and
vice versa. In the example below, the static type variable t will be determined
by the (static) context in which it is used, and will impose a restriction on
the actual type that is accepted at run-time by matchDynamic. It yields Just the
value inside the dynamic (if the dynamic contains a value of the required context
dependent type) or Nothing (if it does not).

matchDynamic :: Dynamic→ Maybe t | TC t7

matchDynamic (x :: t^) = Just x
matchDynamic other = Nothing

2.1 Reading and Writing of Dynamics

The dynamic run-time system of Clean supports writing dynamics to disk and
reading them back again, possibly in another application or during another ex-
ecution of the same application. This is not a trivial feature, since Clean is not
an interpreted language: it uses compiled code. Since a dynamic may contain
4 Defines a new data type in Clean, Haskell uses the data keyword.
5 Clean separates argument types by whitespace, instead of →.
6 The type b is also inferred by the compiler.
7 Clean uses | to announce context restrictions. In Haskell this would be written as
(TC t) ⇒ Dynamic → Maybe t.

250 R. Plasmeijer and A. van Weelden

unevaluated functions, reading a dynamic implies that the corresponding code
produced by the compiler has to be added to the code of the running applica-
tion. To make this possible one needs a dynamic linker. Furthermore, one needs
to to be able to retrieve the type definitions and function definitions that are
associated with a stored dynamic. With the ability to read and write dynamics,
type safe plug-ins can be realized in Clean relatively easily.

Writing a Dynamically Typed Expression to File. A dynamic of any value
can be written to a file on disk using the writeDynamic function.

writeDynamic :: String Dynamic *8World→ (Bool, *World)

In the producer example below a dynamic is created which consists of the ap-
plication of the function sieve to an infinite list of integers. This dynamic is
then written to file using the writeDynamic function. Evaluation of a dynamic
is done lazily. The producer does not demand the result of the application of
sieve to the infinite list. As a consequence, the application in its unevaluated
form is written to file. The file therefore contains a calculation that will yield a
potential infinite integer list of prime numbers.

producer :: *World→ *World
producer world = writeDynamic ”primes” (dynamic sieve [2..]) world
where

sieve :: [Int] → [Int]
sieve [prime:rest] = [prime:sieve filter]
where

filter = [h \\ h <− rest | h mod prime <> 0]

When the dynamic is stored to disk, not only the dynamic expression and its
type has to be stored somewhere. To allow the dynamic to be used as a plug-in
by any other application additional information has to be stored as well. One
also has to store:

– the code corresponding to the function definitions that are referred to in
closures inside the dynamic;

– the definitions of all the types involved needed to check type consistency
when matching on the type of the dynamic in another Clean program.

The required code and type information will be generated by the compiler and
is stored in a special data base when an application is compiled and linked. For
the detail of the bookkeeping of the code data base, we refer to [7]. The code and
type information is created and stored once at compile-time, while the dynamic
value and dynamic type can be created and stored several times at run-time.

8 This is a uniqueness attribute, indicating that the world environment is passed
around in a single threaded way. Unique values allow safe destructive updates and
are used for I/O in Clean. The value of type World corresponds to the hidden state
of the IO monad in Haskell.

A Functional Shell That Operates on Typed and Compiled Applications 251

The run-time system has to be able to find both kinds of information when a
dynamic is read in.

Reading a Dynamically Typed Expression from File. A dynamic can be
read from disk using the readDynamic function.

readDynamic :: String *World→ (Bool, Dynamic, *World)

This readDynamic function is used in the consumer example below to read the
earlier stored dynamic. The dynamic pattern match checks whether the dynamic
expression is an integer list. In case of success the first 100 elements are taken.
In case that the read in dynamic is not of the indicated type, the consumer
aborts. Actually, it is not possible to do something with a read-in dynamic
(besides passing it around to other functions or saving it to disk again), unless
the dynamic matches some type or type scheme specified in the pattern match
of the receiving application.

consumer :: *World→ [Int]
consumer world
#9 (ok, dyn, world) = readDynamic ”primes” world
= take 100 (extract dyn)
where

extract :: Dynamic→ [Int]
extract (list :: [Int]) = list
extract other = abort ”dynamic type check failed”

To turn a dynamically typed expression into a statically typed expression,
the following steps are performed by the run-time system of Clean:

– The type of the dynamic and the type specified in the pattern are unified
with each other. If the unification fails, the dynamic pattern match also fails.

– If the unification is successful, it is checked that the type definitions of equally
named types coming from different applications are equal as well. If one
of the involved type definitions differs, the dynamic pattern match fails.
Equally named types are equivalent if and only if their type definitions are
syntactically the same (modulo alpha-conversion and the order of algebraic
data constructors).

– If all patterns match, the corresponding function alternative is chosen and
evaluated.

– It is possible that for the evaluation of the, now statically typed, expression
parts of its representation on disk are required. In that case, the expression
is reconstructed out of the information stored in the dynamic on disk, the
corresponding code needed for the evaluation of the expression is added to
the running application, after which the expression can be evaluated.

Running prog1 and prog2 in the example below will write a function and a
value to dynamics on disk. Running prog3will create a new dynamic on disk that
9 Clean uses environment passing, instead of monads, for side effects. It supports let-

before (#) to increase readability.

252 R. Plasmeijer and A. van Weelden

contains the result of ‘applying’ (using the dynamicApply function) the dynamic
with the name “function” to the dynamic with the name “value”. The closure
40 + 2 will not be evaluated until the * operator needs it. In this case, because
the ‘dynamic application’ of df to dx is lazy, the closure will not be evaluated
until the value of the dynamic on disk named “result” is needed. Running prog4
tries to match the dynamic dr, from the file named “result”, with the type Int.
After this succeeds, it displays the value by evaluating the expression, which is
semantically equal to let x = 40 + 2 in x * x, yielding 1764.

prog1 world = writeDynamic ”function” (dynamic (*)) world

prog2 world = writeDynamic ”value” (dynamic 40 + 2) world

prog3 world = let (ok1, df, world1) = readDynamic ”function” world
(ok2, dx, world2) = readDynamic ”value” world1

in writeDynamic ”result” (dynamicApply df dx) world2

prog4 world = let (ok, dr, world1) = readDynamic ”result” world
in (case dr of (x :: Int) → x , world1)

A dynamic will be read in lazily after a successful run-time unification (trig-
gered by a pattern match on the dynamic). The dynamic linker will take care
of the actual linking of the code to the running application and the checking of
the type definitions referenced by the dynamic being read. The dynamic linker
is able to find the code and type definitions in the data base in which they are
stored by the compiler. The amount of data and code that the dynamic linker
will link depends on how far the dynamic expression is evaluated.

Dynamics written by one application program can safely be read by any other
application. Only when the linker confirms that both programs agree on the used
types, it can be plugged in so that the application can do something with it. The
reading program is extended with the new types found in the dynamic. Known
types and constructors in the dynamic are mapped to the corresponding types
in the program. In this way two Clean applications can communicate values of
any type they like, including function types, in a type safe manner.

3 Overview of the Shell

Like any other shell, our Esther shell enables users to start pre-compiled pro-
grams, provides simple ways to combine multiple programs, e.g., pipelining and
concurrent execution, and supports execution-flow controls, e.g., if-then-else con-
structs. It provides a way to interact with the underlying operating system and
the file system, using a textual command line/console interface.

A special feature of the Esther shell is that it offers a complete typed func-
tional programming language with which programs can be constructed. The
shell type checks a command line before performing any actions. Traditional
shells provide very limited error checking before executing the given command

A Functional Shell That Operates on Typed and Compiled Applications 253

line. This is mainly because the applications mentioned at the command line are
practically untyped because they work on, and produce, streams of characters.
The intended meaning of these streams of characters varies from one program
to the other. The choice to make our shell language typed also has consequences
for the underlying operating system and file system: they should be able to deal
with types as well.

In this section we give a brief overview of the functionality of the Esther shell
and the underlying operating system and file system it relies on.

3.1 Famke: A Type Safe Micro Kernel

A shell has to be able to start applications and to provide a way to connect
applications (e.g., by creating a pipe-line) such that they can communicate.
Since our shell is typed, process communication should be type safe as well.
The Windows Operating System that we use does not provide such a facility.
We therefore have created a micro kernel on top of Windows. Our micro-kernel,
Famke, provides Clean programs with ways to start new (possibly distributed
running) processes, and the ability to communicate any value in a type safe way.
It should be no surprise that Famke uses dynamics for this purpose. Dynamics
can be send between applications as strings (see [7]), which makes it possible
to use conventional interprocess communication system such as TCP/IP for the
actual communication.

3.2 A Typed File System

A shell works on applications and data stored on disk. Our shell is typed; it can
only work if all files it operates on are typed as well. We therefore assume that
all files have a proper type.

For applications written in Clean this can be easily realized. Any data, func-
tion, or even any large complete Clean application (which is a function as well)
can be written as dynamic to disk, thus forming a rudimentary typed file system.

Applications written in other languages are usually untyped. We can in prin-
ciple incorporate such an application into in our typed file system, by writing a
properly typed Clean wrapper application around it, which is then stored again
as dynamic on disk. We could also wrap them automatically, or via a function,
and give them the type String String→ String (commandline, stdin → std-
out). Obviously, this type does not really help type checking and is, therefore,
not implemented in this prototype that promotes type checking.

We assume that all documents and compiled applications are stored in a
dynamic of appropriate type. Applications in our file system are just dynamics
that contain a function type. This typed file system makes it possible for the
shell to ensure (given an ideal world where all programs are stored as dynamics)
that it is type safe to apply a printing application (print :: WordDocument→
PostScript) to a document (myDocument :: WordDocument). The Clean dynamic
type system will ensure that the types will indeed fit. This is, of course, not a
very realistic example. It is for illustration purposes only.

254 R. Plasmeijer and A. van Weelden

Fig. 2. A screenshot of the typed file system; implemented as dynamic on disk

Normal directory manipulation operations still apply, but one no longer reads
bytes from a file. Instead, one reads whole files (only conceptually, the dynamic
linker reads it lazily), and one can pattern match on the dynamic to check the
type. This removes the need for explicit (de)serialization, as data structures are
stored directly as graphs in dynamics. Serialization, parsing, and printing are
often significant parts of existing software (up to thirty percent), which may
be reduces by providing these operations in the programming language and/or
operating system.

The shell contains no built-in commands. The commands it knows are de-
termined by the files (dynamics) stored on disk. To find a command, the shell
searches its directories in a specific order as defined in its search paths, looking
for a file with that name.

The shell is therefore pretty useless unless a collection of useful dynamics
has been stored. When the system is initialized, a standard file system is created
(see Fig. 2) in a Windows folder. It contains:

– almost all functions from the Clean standard environment10, such as +, −,
map, and foldr (stored as dynamic on disk);

– common commands to manipulated the file system (mkdir, rmdir, and the
like);

10 Similar to Haskell’s Prelude.

A Functional Shell That Operates on Typed and Compiled Applications 255

– commands to create processes directly based on the functionality offered by
Famke (famkeNewProcess, and the like).

All folders are common Window folders, all files contain dynamics created
by Clean applications using the writeDynamic-function. The implementation of
dynamics on disk is organized in such a way ([7]) that a user can safely rename,
copy or delete files, either using the Esther shell or directly using Windows.

3.3 Esther: A Type Checking Shell

The last example of Sect. 2 shows how one can store and retrieve values, ex-
pressions, and functions of any type to and from the file system. It also shows
that the dynamicApply function can be used to type check an application at
run-time using the static types stored in dynamics. Combining both in an inter-
active ‘read expression – apply dynamics – evaluate and show result’ loop gives
a very simple shell that already supports the type checked run-time application
of programs to documents. For maximum flexibility, the shell contains almost
no built-in functions. Any Clean function can be saved to disk using dynamics,
and can thus be used by Esther.

Esther performs the following steps in a loop:

– it reads a string from the console and parses it like a Clean expression. It
supports Clean’s basic and predefined types, application, infix operators,
lambda abstraction, functions, overloading, let(rec), and case expressions;

– identifiers that are not bound by a lambda abstraction, a let(rec), or a case
pattern are assumed to be names of dynamics on disk, and they are read
from disk;

– type checks the expression using dynamic run-time unification and type pat-
tern matching, which also infers types;

– if the command expression does not contain type errors, Esther displays
the result of the expression and the inferred type. Esther will automatically
be extended with any code necessary to display the result (which requires
evaluation) by the dynamic linker.

For instance, if the user types in the following expression:

> map ((+) 1) [1..10]

the shell reacts as follows:

[2,3,4,5,6,7,8,9,10,11] :: [Int]

Roughly the following happens. The shell parses the expression. The ex-
pression consists of typical Clean-like syntactical constructs (such as (,), and
[..]), constants (such as 1 and 10), and identifiers (such as map and +).

The names map and + are unbound (do not appear in the left hand side
of a let, case, lambda expression, or function definition) in this example, and
the shell therefore assumes that they are names of dynamics on disk. They are

256 R. Plasmeijer and A. van Weelden

read from disk (with help of readDynamic), practically extending its function-
ality with these functions, and inspects the types of the dynamics. It uses the
types of map (let us assume that the file map contains the type that we expect:
(a→ b) [a] → [b]), + (for simplicity, let us assume: Int Int→ Int) and the
list comprehension (which has type: [Int]) to type-check the command line. If
this succeeds, which it should given the types above, the shell applies the partial
application of + with the integer one to the list of integers from one to ten,
using the map function. The application of one dynamic to another is done using
the dynamicApply function from Sect. 2, extended with better error reporting.
How this is done exactly, is explained in more detail in Sect. 4. With the help
of the dynamicApply function, the shell constructs a new function that performs
the computation map ((+) 1) [1..10] . This function uses the compiled code of
map, +, and [..] , which is implemented as a generator function called _from_to
in Clean.

Our shell can therefore be regarded as a hybrid interpreter/compiler, where
the command line is interpreted/compiled to a function that is almost as efficient
as the same function written directly in Clean and compiled to native code. If
functions, such as map and +, are used in other commands later on, the dynamic
linker will notice that they are already have been used and linked in, and it will
reuse their code. As a consequence, the shell will react even quicker, because no
dynamic linking is required anymore in such a case. For more details on Clean’s
dynamic linker we refer to Vervoort and Plasmeijer [7].

3.4 The Esther Command Language

Here follow some command line examples with an explanation of how they are
handled by the shell. Figure 3 show two example sessions with Esther. The right
Esther window in Fig. 3 shows the same directory as the Windows Explorer

Fig. 3. A combined screenshot of the two concurrent sessions with Esther

A Functional Shell That Operates on Typed and Compiled Applications 257

window in Fig. 2. We explain Esther’s syntax by example below. Like a common
UNIX shell, the Esther shell prompts the user with something like 1:/home> for
typing in a new command. For readability we use only > in the examples below.

Expressions. Here are some more examples of expressions that speak for them-
selves. Application:

> map
map :: (a -> b) [a] -> [b]

Expressions that contain type errors:

> 40 + "5"
*** cannot apply + 40 :: Int -> Int

to "5" :: {#Char} ***

Saving Expressions to Disk. Expressions can be stored as dynamics on disk
using >>:

> 2 >> two
2 :: Int
> two
2 :: Int

> (+) 1 >> inc
+ 1 :: Int -> Int
> inc 41
42 :: Int

The >> operator is introduced mostly for convenience. Most expressions of
the form expr >> name can be written as:

writeDynamic ”name” (dynamic expr) world

Unfortunately, it does not work to specify the >> operator as

(>>) expr name = writeDynamic ”name” (dynamic expr)

because this can require a rank-2 type that neither Esther, nor the Clean’s com-
piler, can infer. Furthermore, >> uses writeDynamic as is therefore a function
with side-effects, and it has type *World→ (Bool, *World). Functions of this
type must be treated specially by Esther, which must pass them the world envi-
ronment11. By defining the >> operator at the syntax level, we circumvent these
problems.

Overloading. Esther resolves overloading in almost the same way as Clean. It is
currently not possible to define new classes at the command line, but they can be
introduced using a simple Clean program that stores the class as an overloaded
11 Execute them in the IO monad.

258 R. Plasmeijer and A. van Weelden

function. It is also not possible to save overloaded command-line expressions
using the >> described above. Arithmetic operations are overloaded in Esther,
just as they are in Clean:

> +
+ :: a a -> a | + a

> one
one :: a | one a

> (+) one
(+) one :: a -> a | + a & one a

Function Definitions. One can define new functions at the command line:

> dec x = x - 1
dec :: Int -> Int

This defines a new function with the name dec. This function is written to
disk in a file with the same name (dec) such that from now on it can be used in
other expressions.

> fac n = if (n < 2) 1 (n * fac (dec n))
S (C‘ IF (C‘ < I 2) 1) (S‘ * I (B (S .+. .+.) (C‘ .+. .+. .+.)))
:: Int -> Int

The factorial function is constructed by Esther using combinators (see
Sect. 4), which explains why Esther responds in this way. The internals of the
function shown by Esther proved useful while debugging Esther itself, but this
may change in the future.

Functions can not only be reused within the shell itself, but also used by any
other Clean program. Such a function is a dynamic and can be used (read in,
dynamically linked, copied, renamed, communicated across a network) as usual.

Notice that dynamics are read in before executing the command line, so it is
not possible to change the meaning of a part of the command line by overwriting
a dynamic.

Lambda Expressions. It is possible to define lambda expressions, just as in
Clean.

> (\f x -> f (f x)) ((+) 1) 0
2 :: Int

> (\x x -> x) "first-x" "second-x"
"second-x" :: String

Esther parses the example above as: λx→ (λx→ x). This is not standard,
and may change in the future.

A Functional Shell That Operates on Typed and Compiled Applications 259

Let Expressions. To introduce sharing and to construct both cyclic and infinite
data structures, one can use let expressions.

> let x = 4 * 11 in x + x
88 :: Int

> let ones = [1:ones] in take 10 ones
[1,1,1,1,1,1,1,1,1,1] :: [Int]

Case Expressions. It is possible to do a simple pattern match using case
expressions. Nested patterns are not yet supported, but one can always nest
case expressions by hand. An exception Pattern mismatch in case is raised if
a case fails.

> hd list = case list of [x:xs] -> x
B‘ (\ (B K I)) mismatch I :: [a] -> a

> hd [1..]
1 :: Int

> hd []
*** Pattern mismatch in case ***

> sum l = case l of [x:xs] -> x + sum xs; [] -> 0
B‘ (\ (C‘ (B‘ .+.) I (B .+. .+.))) (\ 0 mismatch) I
:: [Int] -> Int

The interpreter understands Clean denotations for basic types like Int, Real,
Char, String, Bool, tuples, and lists. But how can one perform a pattern match
on a user defined constructor defined in some application? It is not (yet) possible
to define new types in the shell itself. But one can define the types in any Clean
module, and construct an application writing the constructors as dynamic to disk.

module NewType

:: Tree a = Node (Tree a) (Tree a) | Leaf a

Start world
(ok , world) = writeDynamic ”Node”

(dynamic Node :: A.a: (Tree a) (Tree a) → Tree a) world
(ok , world) = writeDynamic ”Leaf”

(dynamic Leaf :: A.a: a→ Tree a) world
(ok , world) = writeDynamic ”myTree”

(dynamic Node (Leaf 1) (Leaf 2)) world
= world

These constructors can then be used by the shell to pattern match on a value
of that type.

260 R. Plasmeijer and A. van Weelden

> leftmost tree = case tree of Leaf x -> x; Node l r -> leftmost l
leftmost :: (Tree a) -> a

> leftmost (Node (Node myTree myTree) myTree)
1 :: Int

Typical Shell Commands. Esther’s search path also contains a directory with
common shell commands, such a file system operations:

> mkdir "foo"
UNIT :: UNIT

Esther displays UNIT because mkdir has type World→ World, i.e., has a side
effect, but no result. Functions that operate on the Clean’s World state are
applied to the world by Esther.

More operations on the file system:

> cd "foo"
UNIT :: UNIT

> 42 >> bar
42 :: Int

> ls ""
"
bar
" :: {#Char}

Processes. Examples of process handling commands:

> famkeNewProcess "localhost" Esther
{FamkeId "131.174.32.197" 2} :: FamkeId

This starts a new, concurrent, incarnation of Esther at the same computer. IP
addresses can be used to start processes on other computers. famkeNewProcess
yields a new process id (of type FamkeId). It is necessary to have the Famke
kernel running on the other computer, e.g., by starting a shell there, to be able
to start a process on another machine. Starting Esther on another machine does
not give remote access, the console of the new incarnation of Esther is displayed
on the other machine.

4 Implementation of Esther Using Clean’s Dynamics

In this section, we explain how one can use the type unification of Clean’s dy-
namic run-time system to type check a shell command, and we show how the
corresponding Clean expression is translated effectively using combinations of
already existing compiled code.

A Functional Shell That Operates on Typed and Compiled Applications 261

Obviously, we could have implemented type checking ourselves using one of
the common algorithms involving building and solving a list of type equations.
Another option would be to use the Clean compiler to do the type checking and
compilation of the command line expressions. Instead, we decided to use Clean’s
dynamic run-time unification, because we want to show the power of Clean’s
dynamics, and because this has several advantages:

– Clean’s dynamics allow us to do type safe and lazy I/O of expressions;
– we do not need to convert between the (hidden) type representation used by

dynamics and the type representation used by our type checking algorithm;
– it shows whether Clean’s current dynamics interface is powerful enough to

implement basic type inference and type checking;
– we get future improvements of Clean’s dynamics interface for free, e.g.,

uniqueness attributes or overloading.

The parsing of a shell command line is trivial and we will assume here that
the string has already been successfully parsed.

In order to support a basic, but complete, functional language in our shell
we need to support function definitions, lambda, let(rec), and case expressions.

We will introduce the syntax tree constructors piecewise and show for each
kind of expression how to construct a dynamic that contains the corresponding
Clean expression and the type for that expression. Names occurring free in the
command line are read from disk as dynamics before type checking. The expres-
sion can contain references other dynamics, and therefore references the compiled
code of functions, which will be automatically linked by Clean’s run-time system.

4.1 Application

Suppose we have a syntax tree for constant values and function applications that
looks like:

:: Expr = (@) infixl 912 Expr Expr //13 Application
| Value Dynamic // Constant or dynamic value from disk

We introduce a function compose, which constructs the dynamic containing a
value with the correct type that, when evaluated, will yield the result of the
given expression.

compose :: Expr→ Dynamic
compose (Value d) = d
compose (f @ x) = case (compose f , compose x) of

(f :: a→ b , x :: a) →dynamic f x :: b
(df , dx) → raise14 (”Cannot apply ” +++ typeOf df

+++ ” to ” +++ typeOf dx)

12 This defines an infix constructor with priority 9 that is left associative.
13 This a Clean comment to end-of-line, like Haskell’s --.
14 For easier error reporting, we implemented imprecise user-defined exceptions à la

Haskell [8]. We used dynamics to make the set of exceptions extensible.

262 R. Plasmeijer and A. van Weelden

typeOf :: Dynamic→ String
typeOf dyn = toString (typecodeOfDynamic dyn) // pretty print type

Composing a constant value, contained in a dynamic, is trivial. Composing an
application of one expression to another is a lot like the dynamicApply function
of Sect. 2. Most importantly, we added error reporting using the typeOf function
for pretty printing the type of a value inside a dynamic.

In an application both dynamic arguments contain references to compiled
code. If we write the resulting dynamic (f x) to disk, it contains references to
the compiled code of f and CleanInlinex. Furthermore, we added a reference to
the code of Clean’s application. The resulting dynamic is self contained in the
sense that the shell is not required to execute the code inside the dynamic. When
the resulting dynamic is used in another Clean program, the referenced code is
linked into the running program. Hence, we effectively combined existing code
to form the new code of the resulting expression. This shows that the resulting
code is not interpreted, but actually compiled via Clean’s dynamics, even if not
all conversions to dynamics (describe below) are as efficient one expects from a
real compiler.

4.2 Lambda Expressions

Next, we extend the syntax tree with lambda expressions and variables.

:: Expr = · · · // Previous def.
| (∼>) infixr 0 Expr Expr // Lambda abstraction: λ .. → ..
| Var String // Variable
| S | K | I // Combinators

At first sight, it looks as if we could simply replace a∼> constructor in the syntax
tree with a dynamic containing a lambda expression in Clean:

compose (Var x ∼> e) = dynamic (λy→ composeLambda x y e :: ?)

The problem with this approach is that we have to specify the type of the lambda
expression before the evaluation of composeLambda. Furthermore, composeLambda
will not be evaluated until the lambda expression is applied to an argument. This
problem is unavoidable because we cannot get ‘around’ the lambda. Fortunately,
bracket abstraction [9] solves both problems.

Applications and constant values are composed to dynamics in the usual way.
We translate each lambda expression to a sequence of combinators (S, K, and I)
and applications, with the help of the function ski.

compose · · · // Previous def.
compose (x ∼> e) = compose (ski x e)
compose I = dynamic λx→ x
compose K = dynamic λx y→ x
compose S = dynamic λf g x→ f x (g x)

A Functional Shell That Operates on Typed and Compiled Applications 263

ski :: Expr Expr→ Expr // common bracket abstraction
ski x (y ∼> e) = ski x (ski y e)
ski (Var x) (Var y) |15 x == y = I
ski x (f @ y) = S @ ski x f @ ski x y
ski x e = K @ e

Composing lambda expressions uses ski to eliminate the ∼> and Var syntax
constructors, leaving only applications, dynamic values, and combinators. Com-
posing a combinator simply wraps its corresponding definition and type as a
lambda expression into a dynamic.

Special combinators and combinator optimization rules are often used to im-
prove the speed of the generated combinator code by reducing the number of
combinators [10]. One has to be careful not to optimize the generated combi-
nator expressions in such a way that the resulting type becomes too general.
In an untyped world this is allowed because they preserve the intended seman-
tics when generating untyped (abstract) code. However, our generated code is
contained within a dynamic and is therefore typed. This makes it essential that
we preserve the principal type of the expression during bracket abstraction.
Adding common eta-reduction, for example, results in a too general type for
Var ”f” ∼> Var ”x” ∼> f x): a→ a, instead of: (a→ b) → a→ b. Such opti-
mizations might prevent us from getting the principal type for an expression.
Simple bracket abstraction using S, K, and I, as performed by ski, does preserve
the principal type [11].

Code combined by Esther in this way is not as fast as code generated by the
Clean compiler. Combinators introduced by bracket abstraction are the main rea-
son for this slowdown. Additionally, all applications are lazy and not specialized
for basic types. However, these disadvantages only hold for the small (lambda)
functions written at the command line, which are mostly used for plumbing. If
faster execution is required, one can always copy-paste the command line into a
Clean module that writes a dynamic to disk and running the compiler.

In order to reduce the number of combinators in the generated expression,
our current implementation uses Diller’s algorithm C [12] without eta-conversion
in order to preserve the principal type, while reducing the number of generated
combinators from exponential to quadratic. Our current implementation seems
to be fast enough, so we did not explore further optimizations by other bracket
abstraction algorithms.

4.3 Irrefutable Patterns

Here we introduce irrefutable patterns, e.g., (nested) tuples, in lambda expres-
sions. This is a preparation for the upcoming let(rec) expressions.

:: Expr = · · · // Previous def.
| Tuple Int // Tuple constructor

15 If this guard fails, we end up in the last function alternative.

264 R. Plasmeijer and A. van Weelden

compose · · · // Previous def.
compose (Tuple n) = tupleConstr n

tupleConstr :: Int→ Dynamic
tupleConstr 2 = dynamic λx y→ (x , y)
tupleConstr 3 = dynamic λx y z→ (x , y , z)
tupleConstr · · · // and so on...16

ski :: Expr Expr→ Expr
ski (f @ x) e = ski f (x ∼> e)
ski (Tuple n) e = Value (matchTuple n) @ e
ski · · · // previous def.

matchTuple :: Int→ Dynamic
matchTuple 2 = dynamic λf t→ f (fst t) (snd t)
matchTuple 3 = dynamic λf t→ f (fst3 t) (snd3 t) (thd3 t)
matchTuple · · · // and so on...

We extend the syntax tree with Tuple n constructors (where n is the number of
elements in the tuple). This makes expressions like

Tuple 2 @ Var ”x” @ Var ”y” ∼> Tuple 2 @ Var ”y” @ Var ”z”

valid expressions. This example corresponds with the Clean lambda expression
λ(x , y , z) → (x , z).

When the ski function reaches an application in the left-hand side of the
lambda abstraction, it processes both sub-patterns recursively. When the ski
function reaches a Tuple constructor it replaces it with a call to the matchTuple
function. Note that the right-hand side of the lambda expression has already been
transformed into lambda abstractions, which expect each component of the tuple
as a separate argument. We then use the matchTuple function to extract each
component of the tuple separately. It uses lazy tuple selections (using fst and
snd, because Clean tuple patterns are always eager) to prevent non-termination
of recursive let(rec)s in the next section.

4.4 Let(rec) Expressions

Now we are ready to add irrefutable let(rec) expressions. Refutable let(rec) ex-
pressions must be written as cases, which will be introduced in next section.

:: Expr = · · · // Previous def.
| Letrec [Def] Expr // let(rec) .. in ..
| Y // Combinator

:: Def = (:=:) infix 0 Expr Expr // .. = ..

16 ...until 32. Clean does not support functions or data types with arity above 32.

A Functional Shell That Operates on Typed and Compiled Applications 265

compose · · · // Previous def.
compose (Letrec ds e) = compose (letRecToLambda ds e)
compose Y = dynamic let y = f y in y :: A.a: (a→ a) → a

letRecToLambda :: [Def] Expr→ Expr
letRecToLambda ds e = let (p :=: d) = combine ds

in ski p e @ (Y @ ski p d)

combine :: [Def] → Def
combine [p :=: e] = p :=: e
combine [p1 :=: e1:ds] = let (p2 :=: e2) = combine ds

in Tuple 2 @ p1 @ p2 :=: Tuple 2 @ e1 @ e2

When compose encounters a let(rec) expression it uses letRecToLambda to convert
it into a lambda expression. The letRecToLambda function combines all (possi-
bly mutually recursive) definitions by pairing definitions into a single (possibly
recursive) irrefutable tuple pattern. This leaves us with just a single definition
that letRecToLambda converts to a lambda expression in the usual way [13].

4.5 Case Expressions

Composing a case expression is done by transforming each alternative into a
lambda Expression that takes the expression to match as an argument. This
yields a function that, once composed, results in a dynamics that contains a
functions that expects a value to match to. If the expression matches the pat-
tern, the right-hand side of the alternative is taken. When it does not match,
the lambda expression corresponding to the next alternative is applied to the
expression, forming a cascade of i f -then-else constructs. This results in a single
lambda expression that implements the case construct, and we apply it to the
expression that we wanted to match against.

:: Expr = · · · // Previous def.
| Case Expr [Alt] // case .. of ..

:: Alt = (:>) infix 0 Expr Expr // .. → ..

compose · · · // Previous def.
compose (Case e as) = compose (altsToLambda as @ e)

We translate the alternatives into lambda expressions below using altsToLambda
below. If the pattern consists of an application we do bracket abstraction for
each argument, just as we did for lambda expressions, in order to deal with
each subpattern recursively. Matching against an irrefutable pattern, such as
variables of tuples, always succeeds and we reuse the code of ski that does the
matching for lambda expressions. Matching basic values is done using ifEqual
that uses Clean’s built-in equalities for each basic type. We always add a default
alternative, using the mismatch function, that informs the user that none of the
patterns matched the expression.

266 R. Plasmeijer and A. van Weelden

altsToLambda :: [Alt] → Expr
altsToLambda [] = Value mismatch
altsToLambda [f @ x :> e:as] = altsToLambda [f :> ski x e:as]
altsToLambda [Var x :> e:_] = Var x ∼> e
altsToLambda [Tuple n :> e:_] = Tuple n ∼> e
altsToLambda [Value dyn :> th:as]

= let el = altsToLambda as
in case dyn of

(i :: Int) → Value (ifEqual i) @ th @ el
(c :: Char) → Value (ifEqual c) @ th @ el
· · · // for all basic types

ifEqual :: a→ Dynamic | TC a & Eq a
ifEqual x = dynamic λth el y→ i f (x == y) th (el y)

:: A.b: b (a^→ b) a^→ b

mismatch = dynamic raise ”Pattern mismatch” :: A.a: a

Matching against a constructor contained in a dynamic takes more work. For
example, if we put Clean’s list constructor [:] in a dynamic we find that
it has type a→ [a] → [a] , which is a function type. In Clean, one cannot
match closures or functions against constructors. Therefore, using the func-
tion makeNode below, we construct a node that contains the right construc-
tor by adding dummy arguments until it has no function type anymore. The
function ifMatch uses some low-level code to match two nodes to see if the
constructor of the pattern matches the outermost constructor of the expres-
sion. If it matches, we need to extract the arguments from the node. This is
done by the applyTo function, which decides how many arguments need to
be extracted (and what their types are) by inspection of the type of the cur-
ried constructor. Again, we use some low-level auxiliary code to extract each
argument while preserving laziness.

Some low-level code is necessary, because selecting an arbitrary argument
of a node is not expressible in Clean. To keep the Clean language referential
transparent, this cannot be expressed in general. Since we know that the resulting
code and types are correct, we chose to write this in Clean’s machine independent
assembly code: ABC-code. Another option is to request destructors/maching
function from the user. We chose to implement this hack using ABC-code because
all information is available, from the Clean run-time system and the data and
heap storage areas. We decided that the users convenience has priority over an
elegant implementation in this case.

altsToLambda [Value dyn :> th:as] = let el = altsToLambda as
in case dyn of

· · · // previous definition for basic types
constr→ Value (ifMatch (makeNode constr))

@ (Value (applyTo dyn) @ th) @ el

A Functional Shell That Operates on Typed and Compiled Applications 267

ifMatch :: Dynamic→ Dynamic
ifMatch (x :: a)=dynamic λth el y→ i f (matchNode x y) (th y) (el y)

:: A.b: (a→ b) (a→ b) a→ b

makeNode :: Dynamic→ Dynamic
makeNode (f :: a→ b) = makeNode (dynamic f undef :: b)
makeNode (x :: a) = dynamic x :: a

applyTo :: Dynamic→ Dynamic
applyTo · · · // and so on, most specific type first...
applyTo (_ :: a b→ c) = dynamic λf x→ f (arg1of2 x) (arg2of2 x)

:: A.d: (a b→ d) c→ d
applyTo (_ :: a→ b) = dynamic λf x→ f (arg1of1 x)

:: A.c: (a→ c) b→ c
applyTo (_ :: a) = dynamic λf x→ f :: A.b: b a→ b

matchNode :: a a→ Bool // low-level code; compares two nodes.

argiofn :: a→ b // low-level code; selects ith argument of an n-ary node

Pattern matching against user defined constructors requires that the construc-
tors are available from, i.e., stored in, the file system. Esther currently does not
support type definitions at the command line, and the Clean compiler must be
used to introduce new types and constructors into the file system. For an example
of this, we refer to the description of the use of case expressions in Sect. 3.4.

4.6 Overloading

Support for overloaded expressions within dynamics in Clean is not yet im-
plemented (e.g., one cannot write dynamic (==) :: A.a: a a→ Bool | Eq a).
Even when a future dynamics implementation supports overloading, it cannot be
used in a way that suits Esther. We want to solve overloading using instances/-
dictionaries from the file system, which may change over time, and which is
something we cannot expect from Clean’s dynamic run-time system out of the
box.

Below is the Clean version of the overloaded functions == and one. We will
use these two functions as a running example.

class Eq a where (==) infix 4 :: a a→ Bool
class one a where one :: a

instance Eq Int where (==) x y = // low-level code to compare integers
instance one Int where one = 1

To mimic Clean’s overloading, we introduce the type Overloaded to differentiate
between ‘overloaded’ dynamics and ‘normal’ dynamics. The type Overloaded,
shown below, has three type variables that represent: the dictionary type d, the

268 R. Plasmeijer and A. van Weelden

‘original’ type of the expression t, and the type of the name of the overloaded
function o, which also contains the variable the expression is overloaded in.
Values of the type Overloaded consists of a infix constructor ||| followed by the
overloaded expression (of type d→ t), and the context restrictions (of type o).
A term Class c of type Context v is used for a single context restriction of the
class c on the type variable v. Multiple context restrictions are combined in a
tree of type Contexts.

:: Overloaded d t o = (|||) infix 1 (d→ t) o
:: Contexts a b = (&&&) infix 0 a b
:: Context v = Class String

(==) = dynamic id ||| Class ”Eq”
:: A.a: Overloaded (a a→ Bool) (a a→ Bool) (Context a)

one = dynamic id ||| Class ”one” :: A.a: Overloaded a a (Context a)

instance_Eq_Int = dynamic λx y→ x == y :: Int Int→ Bool
instance_one_Int = dynamic 1 :: Int

The dynamic (==), in the example above, is Esther’s representation of Clean’s
overloaded function ==. The overloaded expression itself is the identity function
because the result of the expression is the dictionary. The name of the class is Eq.
The dynamic (==) is overloaded in a single variable a, the type of the dictionary
is a→ a→ Bool as expected, the ‘original’ type is the same, and the type of
the name is Context a. Likewise, the dynamic one is Esther’s representation of
Clean’s overloaded function one.

By separating the different parts of the overloaded type (the expression, the
dictionary, and the variable) we obtain direct access to the variable in which
the expression is overloaded. This makes it easy to detect if the overloading has
been resolved: the variable no longer unifies with A.a: a.a. By separating the
dictionary type and the ‘original’ type of the expression, it becomes easier to
check if the application of one overloaded dynamic to another is allowed. We can
check if a value of type Overloaded _ (a→ b) _ can be applied to a value of
type Overloaded _ a _).

To apply one overloaded dynamic to another, we combine the overloading
information using the Contexts type in the way shown below in the function
applyOverloaded.

applyOverloaded :: Dynamic Dynamic→ Dynamic
applyOverloaded (f ||| of :: Overloaded df (a→ b) cf) (x :: a)

= dynamic (λd_f→ f d_f x) ||| of :: Overloaded df b cf
applyOverloaded (f :: a→ b) (x ||| ox :: Overloaded dx a cx)

= dynamic (λd_x→ f (x d_x)) ||| ox :: Overloaded dx b cx
applyOverloaded (f ||| of :: Overloaded df (a→ b) cf)

(x ||| ox :: Overloaded dx a cx)
= dynamic (λ(d_f, d_x) → f d_f (x d_x)) ||| of &&& ox
:: Overloaded (df, dx) b (Contexts cf cx)

A Functional Shell That Operates on Typed and Compiled Applications 269

applyOverloaded applies an overloaded function to a value, a function to an
overloaded value, or an overloaded function to an overloaded value. The compose
function from the beginning of this section is extended in the same way to handle
‘overloaded dynamics’.

We use the (private) data type Contexts instead of tuples because this allows
us to differentiate between a pair of two context restrictions and a single variable
that has been unified with a tuple.

Applying applyOverloaded to (==) and one yields an expression semantically
equal to isOne below. The overloaded expression isOne needs a pair of dictio-
naries to build the expression (==) one and has two context restrictions on the
same variable. The ‘original’ type is a→ Bool, and it is overloaded in Eq and
one. Esther will pretty print this as: isOne :: a→ Bool | Eq a & one a.

isOne = dynamic (λ(d_Eq, d_one) → id d_Eq (id d_one))
||| Class ”Eq” &&& Class ”one”

:: A.a: Overloaded ((a a→ Bool, a) (a→ Bool))
(Contexts (Context a) (Context a)

Applying isOne to the integer 42 will bind the variable a to Int. Esther is
now able to choose the right instance for both Eq and one. It searches the file
system for the files named “instance Eq Int” and “instance one Int”, and applies
the code of isOne to the dictionaries after applying the overloaded expression to
42. The result will look like isOne42 in the example below, where all overloading
has been removed from the type.

isOne42 = dynamic (λ(d_Eq, d_one) → id d_Eq (id d_one) 42)
(instance_Eq_Int, instance_one_Int) :: Bool

Although overloading is resolved in the example above, the plumbing/dic-
tionary passing code is still present. This will increase evaluation time, and it is
not clear yet how this can be prevented.

5 Related Work

We have not yet seen an interpreter or shell that equals Esther’s ability to use
pre-compiled code, and to store expressions as compiled code, which can be used
in other already compiled programs, in a type safe way.

Es [14] is a shell that supports higher-order functions and allows the user
to construct new functions at the command line. A UNIX shell in Haskell [15]
by Jim Mattson is an interactive program that also launches executables, and
provides pipelining and redirections. Tcl [16] is a popular tool to combine pro-
grams, and to provide communications between them. None of these programs
provides a way to read and write typed objects, other than strings, from and to
disk. Therefore, they cannot provide our level of type safety.

A functional interpreter with a file system manipulation library can also
provide functional expressiveness and either static or dynamic type checking of

270 R. Plasmeijer and A. van Weelden

part of the command line. For example, the Scheme Shell (ScSh) [17] integrates
common shell operations with the Scheme language to enable the user to use
the full expressiveness of Scheme at the command line. Interpreters for statically
typed functional languages, such as Hugs [18], even provide static type checking
in advance. Although they do type check source code, they cannot type check
the application of binary executables to documents/data structures because they
work on untyped executables.

The BeanShell [19] is an embeddable Java source interpreter with object
scripting language features, written in Java. It is capable of inferring types for
variables and to combine shell scripts with existing Java programs. While Esther
generates compiled code via dynamics, the BeanShell interpreter is invoked each
time a script is called from a normal Java program.

Run-time code generation in order to specialize code at run-time to certain
parameters is not related to Esther. Esther only combines existing code into new
code, by adding code for function application and combinators in between, using
Clean’s dynamic I/O system.

There are concurrent versions of both Haskell and Clean. Concurrent
Haskell [20] offers lightweight threads in a single UNIX process and provides
M-Vars as the means of communication between threads. Concurrent Clean
[21] is only available on multiprocessor Transputers and on a network of
single-processor Apple Macintosh computers. Concurrent Clean provides sup-
port for native threads on Transputer systems. On a network of Apple com-
puters, it runs the same Clean program on each processor, providing a virtual
multiprocessor system. Concurrent Clean provided lazy graph copying as the
primary communication mechanism. Neither concurrent system can easily pro-
vide type safety between different programs or between multiple incarnations
of a single program.

Both Lin [22] and Cooper and Morrisett [23] have extended Standard ML
with threads (implemented as continuations using call/CC) to form a small func-
tional operating system. Both systems implement the basics needed for a stand-
alone operating system. However, none of them support the type-safe communi-
cation of any value between different computers.

Erlang [24] is a functional language specifically designed for the development
of concurrent processes. It is completely dynamically typed and primarily uses
interpreted byte-code, while Famke is mostly statically typed and executes native
code generated by the Clean compiler. A simple spelling error in a token used
during communication between two processes is often not detected by Erlang’s
dynamic type system, sometimes causing deadlock.

Back et al. [25] built two prototypes of a Java operating system. Although
they show that Java’s extensibility, portable byte code and static/dynamic type
system provides a way to build an operating system where multiple Java pro-
grams can safely run concurrently, Java does not support dynamic type uni-
fication, higher-order functions, and closures in the comfortable way that our
functional approach does.

A Functional Shell That Operates on Typed and Compiled Applications 271

6 Conclusions

We have shown how to build a shell that provides a simple, but powerful strongly
typed functional programming language. We were able to do this using only
Clean’s support for run-time type unification and dynamic linking, albeit syntax
transformations and a few low-level functions were necessary. The shell named
Esther supports type checking and type inference before evaluation. It offers
application, lambda abstraction, recursive let, pattern matching, and function
definitions: the basics of any functional language. Additionally, infix operators
and support for overloading make the shell easy to use.

By combining code from compiled functions/programs, Esther allows the use
of any pre-compiled program as a function in the shell. Because Esther stores
functions/expressions constructed at the command line as a Clean dynamic, it
supports writing compiled programs at the command line. Furthermore, these
expressions written at the command line can be used in any pre-compiled Clean
program. The evaluation of expressions using recombined compiled code is not
as fast as using the Clean compiler. Speed can be improved by introducing fewer
combinators during bracket abstraction, but it seams unfeasible to make Esther
perform the same optimizations as the Clean compiler. In practice, we find Esther
responsive enough, and more optimizations do not appear worth the effort at
this stage. One can always construct a Clean module using the same syntax and
use the compiler to generate a dynamic that contains more efficient code.

References

1. S. Peyton Jones and J. Hughes et al. Report on the programming language Haskell
98. University of Yale, 1999. http://www.haskell.org/definition/

2. M. J. Plasmeijer and M. C. J. D. van Eekelen. Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

3. R. Plasmeijer and M. van Eekelen. Concurrent Clean Language Report version 2.1.
University of Nijmegen, November 2002. http://cs.kun.nl/∼clean.

4. A. van Weelden and R. Plasmeijer. Towards a Strongly Typed Functional Op-
erating System. In R. Peña and T. Arts, editors, 14th International Workshop
on the Implementation of Functional Languages, IFL’02, pages 215–231. Springer,
September 2002. LNCS 2670.

5. M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic Typing in a Statically
Typed Language. ACM Transactions on Programming Languages and Systems,
13(2):237–268, April 1991.

6. M. Pil. Dynamic Types and Type Dependent Functions. In T. Davie, K. Hammond
and C. Clack, editors, Proceedings of the 10th International Workshop on the Im-
plementation of Functional Languages, volume 1595 of Lecture Notes in Computer
Science, pages 171–188. Springer-Verlag, 1998.

7. M. Vervoort and R. Plasmeijer. Lazy Dynamic Input/Output in the Lazy Func-
tional Language Clean. In R. Peña and T. Arts, editors, 14th International
Workshop on the Implementation of Functional Languages, IFL’02, pages 101–117.
Springer, September 2002. LNCS 2670.

272 R. Plasmeijer and A. van Weelden

8. S. L. Peyton Jones, A. Reid, F. Henderson, C. A. R. Hoare, and S. Marlow. A
Semantics for Imprecise Exceptions. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 25–36, 1999.

9. M. Schönfinkel. Über die Bausteine der mathematischen Logik. In Mathematische
Annalen, volume 92, pages 305–316. 1924.

10. H. B. Curry and R. Feys. Combinatory Logic, volume 1. North-Holland, Amster-
dam, 1958.

11. J. Roger Hindley and J. P. Seldin. Introduction to Combinators and lambda-
Calculus. Cambridge University Press, 1986. ISBN 0521268966.

12. A. Diller. Compiling Functional Languages. John Wiley and Feys Sons Ltd, 1988.
13. S. L. Peyton Jones. The Implementation of Functional Programming Languages.

Prentice-Hall, 1987.
14. P. Haahr and B. Rakitzis. Es: A shell with higher-order functions. In USENIX

Winter, pages 51–60, 1993.
15. J. Mattson. The Haskell Shell. http://www.informatik.uni−bonn.de/∼ralf/soft-

ware/examples/Hsh.html.
16. J. K. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of the

USENIX Winter 1990 Technical Conference, pages 133–146, Berkeley, CA, 1990.
USENIX Association.

17. O. Shivers. A Scheme Shell. Technical Report MIT/LCS/TR-635, 1994.
18. M. P. Jones, A. Reid, the Yale Haskell Group, the OGI School of Sci-

ence, and Engineering at OHSU. The Hugs 98 User Manual, 1994–2002.
http://cvs.haskell.org/Hugs/.

19. P. Niemeyer. Beanshell 2.0. http://www.beanshell.org.
20. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Conference

Record of POPL ’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 295–308, St. Petersburg Beach, Florida, 21–24
1996.

21. E.G.J.M.H. Nocker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer.
Concurrent Clean. In E.H.L. Aarts, J. van Leeuwen, and M. Rem, editors, PARLE
’91: Parallel Architectures and Languages Europe, Volume II, volume 506 of Lecture
Notes in Computer Science, pages 202–219. Springer, 1991.

22. A.C. Lin. Implementing Concurrency For An ML-based Operating System. PhD
thesis, Massachusetts Institute of Technology, February 1998.

23. E.C. Cooper and J.G. Morrisett. Adding Threads to Standard ML. Technical Re-
port CMU-CS-90-186, Pittsburgh, PA, 1990.

24. J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Program-
ming in Erlang. Prentice-Hall, second edition, 1996.

25. G. Back, P. Wullmann, L. Stoller, W. C. Hsieh, and J. Lepreau. Java Operating
Systems: Design and Implementation. Technical Report UUCS-98-015, 6, 1998.

Declarative Debugging with Buddha

Bernard Pope

Department of Computer Science and Software Engineering,
University of Melbourne, Victoria 3010, Australia

bjpop@cs.mu.oz.au

Abstract. Haskell is a very safe language, particularly because of its
type system. However there will always be programs that do the wrong
thing. Programmer fallibility, partial or incorrect specifications and ty-
pographic errors are but a few of the reasons that make bugs a fact
of life. This paper is about the use and implementation of a debugger,
called Buddha, which helps Haskell programmers understand why their
programs misbehave. Traditional debugging tools that examine the pro-
gram execution step-by-step are not suitable for Haskell because of its
unorthodox evaluation strategy. Instead, a different approach is taken
which abstracts away the evaluation order of the program and focuses
on its high-level logical meaning.

This style of debugging is called Declarative Debugging, and it has its
roots in the Logic Programming community. At the heart of the debugger
is a tree which records information about the evaluation of the program
in a manner which is easy to relate to the structure of the source code.
It resembles a call graph annotated with the arguments and results of
function applications, shown in their most evaluated form. Logical rela-
tionships between entities in the source are reflected in the links between
nodes in the tree. An error diagnosis algorithm is applied to the tree in
a top-down fashion in the search for causes of bugs.

1 Introduction

Debugging Haskell is interesting as a topic for research because, quite frankly, it
is hard, and conventional debugging technologies do not suit it well.

On the one hand, Haskell is a very safe language. Implicit memory manage-
ment, pure functions, and static type checking all tend to reduce the kind of bugs
that can be encountered. Trivial programming mistakes tend to be caught early
on in the development process. To use an old adage, there are fewer ways that
a Haskell programmer can “shoot themselves in the foot”. On the other hand,
no language can stop a programmer from making logical errors. Furthermore,
logical errors can be the hardest to find, due to subtle differences between what
the programmer intended, and what they actually wrote. Therefore, debugging
tools that relate program execution with the source code are vital for finding
logical errors that aren’t obvious from reading the source code. Typically there is
a wide gap between the structure of Haskell code and the way it is evaluated, and

273–308, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

274 B. Pope

this makes the task of debugging hard, in particular it rules out the step-based
debugging style widely employed in imperative languages.

Purely functional languages, along with logic languages, are said to be declar-
ative. The uniting theme of these languages is that they emphasise what a pro-
gram computes rather than how it should do it. Or to put it another way,
declarative programs focus on logic rather than evaluation strategy. The declar-
ative style can be adopted in most languages, however the functional and logic
languages tend to encourage a declarative mode of thinking, and are usually
used most productively in that way. Proponents of declarative programming ar-
gue that the style allows programmers to focus on problem solving, and that
the resulting programs are concise, and easier to reason about than equivalent
imperative implementations. The declarative style allows more freedom in the
way that programs are executed because the logic and evaluation strategy are
decoupled. This means that declarative languages can take advantage of novel
execution mechanisms without adding to the complexity of the source code. The
non-strict semantics of Haskell and backtracking search of Prolog are examples
of this.

Despite the many advantages of declarative programming, there are situa-
tions when the programmer must reason about how a program is evaluated. That
is, the evaluation strategy is occasionally very important. For example, when per-
forming input and output (I/O) the relative order of side-effects is crucial to the
correctness of the program. The inclusion of monads and the statement-based
do notation in Haskell reflect this, and where necessary one may adopt an im-
perative style of programming. Also, efficiency considerations sometimes require
that the programmer can influence the evaluation strategy — for example strict
evaluation may lead to better memory consumption.

Debugging is another task that suffers when the evaluation strategy is un-
known to the programmer. The usual approach to debugging is to step through
the program evaluation one operation at a time. However, to make any sense,
this method requires the programmer to have an accurate mental model of the
evaluation strategy — which is the very thing that the declarative style eschews.
Forming an accurate mental model of lazy evaluation is quite a challenge. Log-
ical relationships, such as “X depends on Y”, which are evident in the source
code, may not be apparent in the reduction order.

The other main factor that complicates debugging in Haskell is the tendency
for programs to make extensive use of higher-order functions. The difficulty stems
from three things: the function type is abstract and more difficult to display than
structured data, the relationship between the static and dynamic call graphs is
more complicated, and the specification of correctness much more demanding.

A very basic facility of debugging tools is to print out values from a running
program. Functions are first-class in Haskell but they have no inherent print-
able representation. One might suppose that showing the name of a function
would suffice, however not all functions in Haskell have a name (i.e. lambda ab-
stractions). Also, there is a tendency to construct new functions dynamically by
partial application and composition. If the user of the debugger is to have any

Declarative Debugging with Buddha 275

hope of understanding what their program is doing, functions must be made ob-
servable, and the way they are shown must be easily related to the user’s mental
model of the program.

Higher-order functions make holes in the static call graph that are only filled
in when the program is executed. Curried functions can pick up their arguments
in a piecemeal fashion, and there may be a lengthy delay between when the
initial application is made and when the function has received enough arguments
for a reduction to take place. Whilst the extra flexibility in the call graph is
good for abstraction and modularity, the effect for debugging is similar to the
problem identified with non-strict evaluation — it is harder to relate the dynamic
behaviour of the program with its static description.

Lastly, fundamental questions like: “Is this function application doing what it
should?” have less obvious answers in the higher-order context. Understanding
the meaning of a function is often hard enough, but understanding the meaning
of a function that takes another function as its argument, or returns one as its re-
sult, exacerbates the problem. A significant challenge in the design of debugging
systems for Haskell is how to reduce the cognitive load on the user, especially
when there is a large number of higher-order functions involved. This is an issue
that has seen little attention in the design of debugging systems for mainstream
imperative languages because higher-order code is much less prevalent there.

The debugger we describe in this paper, called Buddha, is based on the phi-
losophy that declarative languages deserve declarative debuggers. Or in other
words, an effective way to deal with the problem of non-strict evaluation and
higher-order functions is to aim the debugging tool at the declarative level of
reasoning. The result is a powerful debugging facility that goes far beyond the
capabilities of step-wise debuggers, extending the benefits of the declarative style
from program development to program maintenance.

Overview

In this paper we explain how Buddha is used, how it is implemented and the
overall philosophy of Declarative Debugging. You, the reader, are assumed to
be comfortable with Haskell, or a similar language, though by no means do you
have to be an expert.

A number of exercises are sprinkled throughout the text for you to ponder
over as you read along. In many cases the questions are open ended, and there
may be more than one “right” answer. Some questions might even be research
topics on their own! Of course there is no obligation to answer them all, they
are merely an aid to help you consolidate the material in between.

The rest of the paper goes as follows:

– Section 2: using Buddha on an example buggy program.
– Section 3: summary of the important parts of Buddha’s implementation.
– Section 4: deciding on the correctness of function applications.
– Section 5: controlling Buddha’s resource usage.
– Section 6: pointers to related work.
– Section 7: conclusion.

276 B. Pope

2 An Example Debugging Session

Let’s consider a short debugging session. Figure 1 contains a program with a
bug.1 It is supposed to print the digits of 341 as a list, but instead it prints
[1,10,10].

This is the intended algorithm:

1. Compute a list of “base ten prefixes” of the number, by integer-dividing it
by increasing powers of ten, starting at 100. For example, the prefixes of 341
are are ‘[341, 34, 1, 0, 0, ...’ This is the job of prefixes.

2. Take numbers from the front of the above list while they are not zero. The
output should be [341, 34, 3]. This is the job of the leadingNonZeros
function.

3. For each number in the above list, obtain the last digit. The output should
be [1,4,3]. This is the job of the lastDigits function.

4. Reverse the above list to give the digits in the desired order.

Normally, functions defined in the standard libraries are trusted by Buddha,
making them invisible in the debugging session. To flesh out this example we
have re-defined a number of Prelude functions within the module, hence the
hiding clause in the import statement on line 3.

Debugging with Buddha takes place in five steps:

1. Program transformation. To make a debugging executable, the source code
of the original program (the debuggee) is transformed into a new Haskell
program. The transformed code is compiled and linked with a declarative
debugging library, resulting in a program called debug.

2. Program execution. The debug program is executed, which runs the de-
buggee to completion and then starts the debugger.

3. Declarative debugging. An interactive dialogue begins between the debugger
and the user. The debugger chooses function applications that were evaluated
during the execution of the debuggee and prints them on the screen. The
user judges them for correctness.

4. Diagnosis. The debugging dialogue continues until either the user terminates
the session or the debugger makes a diagnosis.

5. Retry. For a given set of input values there might be more than one cause of
an erroneous program execution. To find all the causes the user must repeat
the above steps until no more bugs are found.

Each step is outlined below. Boxed text simulates user interaction on an
operating system terminal. Italicised text indicates user-typed input, the rest is
output. The operating system prompt is indicated by �.

Transformation. Buddha is based on program transformation. That is, to make
a debugging executable, the source code of the original program (the debuggee) is

1 Adapted from an example in the HOOD user documentation: www.haskell.org/

hood/documentation.htm.

Declarative Debugging with Buddha 277

1 module Main where

import Prelude hiding (reverse, map, (.), takeWhile, iterate)

5 main = print (digits 341)

digits :: Int -> [Int]

digits = reverse . lastDigits . leadingNonZeros . prefixes

10 prefixes :: Int -> [Int]

prefixes = iterate (‘div‘ 10)

leadingNonZeros :: [Int] -> [Int]

leadingNonZeros = takeWhile (/= 0)

15
lastDigits :: [Int] -> [Int]

lastDigits = map (10 ‘mod‘)

reverse :: [a] -> [a]

20 reverse xs

= revAcc xs []

where

revAcc [] acc = acc

revAcc (x:xs) acc = revAcc xs (x:acc)

25
map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

30 takeWhile :: (a -> Bool) -> [a] -> [a]

takeWhile p [] = []

takeWhile p (x:xs)

| p x = x : takeWhile p xs

| otherwise = []

35
iterate :: (a -> a) -> a -> [a]

iterate f x = x : iterate f (f x)

(.) :: (b -> c) -> (a -> b) -> a -> c

40 (.) f g x = f (g x)

Fig. 1. A program with a bug. It is supposed to compute the digits of 341 as a list

([3,4,1]), but instead it produces [1,10,10]. Line numbers are indicated on the left

hand side.

transformed into a new Haskell program. The transformed code is compiled and
linked with a declarative debugging library, resulting in a program called debug.
When debug is executed it behaves exactly like the debuggee — it accepts the
same command line arguments and performs the same I/O. Where the debuggee

278 B. Pope

would have terminated, debug initiates an interactive debugging session. The
details of the transformation are dealt with in Sec. 3.5.

To use Buddha on a program you must first ask it to transform the program
source (and compile it etcetera). A program called buddha is provided for this
job.2

Suppose that the program resides in a file called Digits.hs. The first thing
to do is transform it, which goes as follows:
�

�

�

�

� buddha Digits.hs

buddha 1.2: initialising
buddha 1.2: transforming: Digits.hs
buddha 1.2: compiling
Chasing modules from: Main.hs
Compiling Main_B (./Main_B.hs, ./Main_B.o)
Compiling Main (Main.hs, Main.o)
Linking ...
buddha 1.2: done

For each module X in the program, buddha transforms the code in that module
and stores the result in a file called X_B.hs. To avoid cluttering the working
directory with the new files, buddha does all of its work in a sub-directory called
Buddha, which is created during its initialisation phase. Compilation and linking
are done by the Glasgow Haskell Compiler (GHC).

Program Execution. The debugging executable (debug) is stored in the
Buddha directory, so you must move to that directory and run it:
�

�

�

	

� cd Buddha

� ./debug

[1,10,10]

The first thing done by debug is to imitate the behaviour of the debuggee —
in this simple example, it just prints the list [1,10,10].

Declarative Debugging. Where the debuggee would have terminated, debug
initiates an interactive debugging session:

�

�

Welcome to buddha, version 1.2
A declarative debugger for Haskell
Copyright (C) 2004, Bernie Pope
http://www.cs.mu.oz.au/~bjpop/buddha

Type h for help, q to quit

2 Don’t confuse Buddha with buddha (the font and capitalisation are significant). Bud-
dha is the name for the whole debugging system, whilst buddha is the name of the
executable program for performing program transformation. We probably should
have called the latter buddha-trans, but that would require more typing!

Declarative Debugging with Buddha 279

Buddha introduces itself with the above banner message. Following this is
something called a derivation, and then the prompt (which is underlined):
�

�

�

	

[1] Main 5 main
result = <IO>

buddha:

A derivation records information about the evaluation of a function applica-
tion or a constant. In the above case, the derivation reports that the constant
main evaluated to an I/O action (which is abstract). Each derivation also in-
dicates in which module the entity was defined, and on what line its definition
begins. In this case main was defined in module Main on line 5. If the entity is
a function application the derivation will also show representations of its argu-
ments. The number inside square brackets is unique to the derivation, and thus
gives it an identity — we’ll see how this is useful in a moment.

The derivations are stored in a tree, one per node, called an Evaluation De-
pendence Tree (EDT).3 It looks just like a call graph. The root always contains
a derivation for main because all Haskell programs begin execution there. De-
bugging is a traversal of this tree, one derivation at a time.

The evaluation of a function application or constant will often depend on
other applications and constants. If you look back at Fig. 1, you will see that
the definition of main depends on a call to print and a call to digits. The
execution of these calls at runtime forms the children of the derivation for main,
and conversely, main is their parent.

An important concept is that of the current derivation. The current deriva-
tion is simply the one that is presently under consideration. In our example
the current derivation is the one for main. If you ever forget what the current
derivation is you can get a reminder by issuing the refresh command.

You can ask Buddha to show you the children of the current derivation by
issuing the kids command:
�
�

�
	buddha: kids

To save typing, many of Buddha’s commands can be abbreviated to one letter,
normally the first letter of the long version. For example, kids can be abbreviated
to k. For the remainder of this example we will use the long versions of each com-
mand for clarity, but you will probably want to use the short version in practice.

Buddha responds to kids as follows:
�

�

�

	

Children of the current derivation:

[2] Main 8 digits
arg 1 = 341
result = [1, 10, 10]

3 The term EDT was coined by Nilsson and Sparud [1].

280 B. Pope

Surprisingly Buddha says that the derivation for main has only one child,
namely an application of digits. What happened to the derivation for print?
Since print is defined in the Prelude it is trusted to be correct. To reduce the size
of the EDT and hopefully save time spent debugging, Buddha does not record
derivations for trusted functions.

Note that kids does not change the current derivation, it just allows you
to look ahead one level in the EDT. At this point in the example the current
derivation is still main.

Exercise 1. If print was not trusted what would its derivation look like in this
case?

Buddha can help you visualise the shape of the EDT with the draw command:
�
�

�
	buddha: draw edt

This generates a graphical representation of the top few levels of the EDT,
using the Dot language [2], and saves it to a file called buddha.dot. You can use
a tool such as dotty4 to view the graph:
�
�

�
	� dotty buddha.dot

Figure 2 illustrates the kind of graph produced by the draw command. It is
worth noting that the resulting graph differs from the EDT in that nodes do not
include function arguments or results (or even line numbers etcetera).

It is very difficult to say anything about the correctness of the derivation for
main because its result, an I/O value, is abstract. Therefore, it is a good idea to
consider function applications that do not give I/O results.5

The child of main is suspicious looking, and thus worthy of further scrutiny.
Here’s where the unique number of the derivation becomes useful. You can
change the current derivation using the jump command. The derivation for
digits is numbered 2, and you can jump to it as follows:
�
�

�
	buddha: jump 2

Although not needed here, it is worth noting that jumps can be undone with
the back command, which takes you back to the derivation that you jumped
from, and allows you to resume debugging from where you left off.

After making the jump Buddha shows the new current derivation:
�

�

�

	

[2] Main 8 digits
arg 1 = 341
result = [1, 10, 10]

4 www.research.att.com/sw/tools/graphviz
5 The version of Buddha described in this paper does not support debugging of func-

tions that perform I/O, however future versions should remove this limitation.

Declarative Debugging with Buddha 281

iterate

iterate

iterate

iterate

prefixes

digits

leadingNonZeros lastDigits reverse . . .

takeWhile

takeWhile

takeWhile

takeWhile

map

map

map

map

revAcc

revAcc

revAcc

revAcc

main

Fig. 2. A representation of the function call graph produced by the draw command,

which shows the relationship between calls in the EDT. Note that the dot (.) is Haskell’s

name for function composition.

This derivation says that digits was applied to 341 and it returned the
list [1, 10, 10]. This is definitely wrong — it should be [3, 4, 1]. When
a derivation is found to be wrong you can declare this information by issuing
a judgement. Function applications or constants that do not agree with your
intended interpretation of the program should be judged as erroneous:
�
�

�
	buddha: erroneous

Buddha’s objective is to find a buggy derivation. A buggy derivation is one
that is erroneous, and which either has no children, or all of its children are
correct. Such a derivation indicates a function or constant which is improperly
defined — it is the cause of at least one bug in the program.

A nice feature of the debugging algorithm is that, if the EDT is finite (and
it always is for terminating programs), once you find an erroneous node you are
guaranteed to find a buggy node.

Exercise 2. Provide an informal argument for the above proposition. What as-
sumptions (if any) do you have to make, and will they be significant in practice?

We have established that the call to digits is erroneous, now Buddha must
determine if it is buggy. This requires an inspection of its children. In Fig. 2 we
see that the application of digits has seven children. Each child corresponds
to an instance of a function which is mentioned in the body of the definition of

282 B. Pope

digits. You might be surprised to see the EDT structured this way, because
none of the function applications in the body of digits are saturated. In a
language that allows partial application of functions, the evaluation contexts
in which a function is first mentioned and when it is fully applied can be quite
disconnected. For example, the definition of digits refers to prefixes. However,
it is not until prefixes is applied (dynamically) in the body of compose that
it becomes saturated. Therefore it might also be reasonable to make the call to
prefixes a child of a call to compose. The parent-child relationship between
nodes in the EDT is based on the idea of logical evaluation dependence. The
idea is that the correctness of the parent depends, in part, on the correctness of
the child. Higher-order programming tends to muddy the waters, and we can see
that there is some degree of flexibility as to the positioning of calls to functions
which are passed as arguments to other functions. Buddha’s approach is to base
the parent-child relationship on the dependency which is evident in the static
definition of functions. Statically, the definition of digits depends on a reference
to prefixes. Dynamically, a call to digits will give rise to a partial application
of prefixes. All the full applications of this particular instance of prefixes
will become children of the application of digits. The same logic is applied to
all the other functions which are mentioned in the body of digits.

There are two possible scenarios that can lead Buddha to a diagnosis. In the
first scenario all the children of digits are correct. The conclusion in that case
is that digits is buggy. In the second scenario one or more of the children of
digits is incorrect. In that case the erroneous children or one or more of their
descendents are buggy. Buddha could collect a set of buggy nodes as its diagnosis,
but for simplicity it stops as soon as one such node has been identified. The idea
is that you find and fix one bug at a time.

In this example Buddha will move to the first child of digits. If that child is
correct it will move to the next child, and so on. If all the children are found to
be correct the diagnosis is complete. If one of the children is erroneous, Buddha
will recursively consider the EDT under that child in the search for a bug.

Exercise 3. Will the order that the children are visited affect the diagnosis of the
bug? Can you think of any heuristics that might reduce the number of derivations
considered in a debugging session?

As it happens, the first child visited by Buddha is a call to compose, which
becomes the new current derivation:

�

�

[3] Main 40 .
arg 1 = { [341, 34, 3, 0, ..? -> [1, 10, 10] }
arg 2 = { 341 -> [341, 34, 3, 0, ..? }
arg 3 = 341
result = [1, 10, 10]

The first two arguments of compose are much more complicated than the
examples we have seen before. The complexity comes from two sources. First,

Declarative Debugging with Buddha 283

this is an instance of higher order programming — compose is a function which
takes functions as its first two arguments. Printing functions is more difficult
than other values, and understanding derivations that contain them can be more
taxing on the brain. Second, we have encountered a partially evaluated list —
the list that ends with ‘..?’. This arises because Haskell is non-strict, and the
value of the tail of the list was never needed. Again, partial values can make
derivations harder to comprehend.

Buddha indicates functional values using the notation:

{ app 1, ..., app n }

where each appi represents a function application of the form:

input -> output

Typically this is only a partial representation of the function — it only reports
the value of the function for the actual values it was applied to.6 Nonetheless,
this is enough information to proceed with debugging. Thus the first argument
to compose is a function that maps ‘[341, 34, 3, 0, ..?’ to ‘[1, 10, 10]’.

Exercise 4. Can you think of any other way to show the value of functions
that appear as arguments or results in derivations? What benefits/costs do the
alternatives have in comparison to the one used by Buddha?

A consequence of the non-strict semantics of Haskell is that some expres-
sions may never reach a normal form throughout the execution of the program.
In this derivation we have a list whose prefix was evaluated four elements deep
and whose tail, after those four elements, was unevaluated — in functional pro-
gramming jargon, a thunk. Note carefully that Buddha shows all values to the
extent that they were evaluated at the end of the execution of the debuggee.

When Buddha encounters a thunk it prints a question mark, although if the
thunk appears at the end of a list it uses square bracket notation for the start
of the list and ‘..?’ to indicate the thunk at the end.

The judgement of derivations involving partial values is considered in more
detail in Sec. 4.2. In this particular case it is not too hard to judge this derivation
to be correct, since it is clearly the intention that:

(.) {Y -> Z} {X -> Y} X = Z

However, we will take this opportunity to reveal another feature of Buddha. It
is quite common during declarative debugging to be faced with a very difficult
derivation. In many cases it is better to look for simpler derivations that might
also lead to a bug diagnosis, rather than struggle with the most difficult ones first.

The defer command tells Buddha to postpone judgement of the current
derivation and move on to another one if possible. Where does it get the next
one from? Remember that there were seven children of the derivation for digits.
6 This representation resembles the idea of minimal function graphs, which were in-

troduced as part of a data-flow analysis of functional languages in [3].

284 B. Pope

We were in the process of checking those children for correctness. In fact we’ve
only looked at one so far, and we found it to be too complicated. Buddha treats
the children as a circular queue. Deferral simply moves the current derivation to
the end of the queue and makes the next derivation the current one. If we keep
deferring we’ll eventually get back to the start again.
�
�

�
	buddha: defer

This leads us to two more applications of compose. Again these could be
judged correct, but for the point of demonstration we’ll defer them both:

�

�

[4] Main 40 .
arg 1 = { [341, 34, 3] -> [1, 10, 10] }
arg 2 = { [341, 34, 3, 0, ..? -> [341, 34, 3] }
arg 3 = [341, 34, 3, 0, ..?
result = [1, 10, 10]

�
�

�
	buddha: defer

�

�

[5] Main 40 .
arg 1 = { [10, 10, 1] -> [1, 10, 10] }
arg 2 = { [341, 34, 3] -> [10, 10, 1] }
arg 3 = [341, 34, 3]
result = [1, 10, 10]

�
�

�
	buddha: defer

Finally something which is easy to judge:
�

�

�

	

[6] Main 20 reverse
arg 1 = [10, 10, 1]
result = [1, 10, 10]

Clearly this application of reverse is correct:
�
�

�
	buddha: correct

Exercise 5. The type of reverse is:

∀ a . [a] -> [a]

How could this polymorphic type be used to simplify derivations of reverse?
Hint: reverse doesn’t care about the value of the items in the list, just their
relative order.

Declarative Debugging with Buddha 285

A correct child cannot be held responsible for an error identified in its parent.
Thus there is no need to consider the subtree under the child, so Buddha moves
on to the next of its siblings:
�

�

�

	

[8] Main 17 lastDigits
arg 1 = [341, 34, 3]
result = [10, 10, 1]

At last we find a child of digits which is erroneous (we expect that the last
digits of [341, 34, 3] to be [1, 4, 3]):

�
�

�
	buddha: erroneous

Exercise 6. The definition of lastDigits in Fig. 1 is accompanied by a type
annotation. The annotation says that lastDigits is a function of one argument,
however the argument is not mentioned in its definition (lastDigits is defined
as a constant). How is this possible? Something interesting happens in Buddha
if you remove that annotation — the derivation for lastDigits changes to the
following:

[8] Main 16 lastDigits
result = { [341, 34, 3] -> [10, 10, 1] }

Can you explain what has happened here? Why does the type annotation make
a difference? Will it influence the diagnosis of the bug?

The discovery of this error causes the focus to shift from the children of
digits to the sub-tree which is rooted at the derivation for lastDigits. The
new goal is to decide whether lastDigits or one of its descendents is buggy.

As it happens the derivation of lastDigits has only one child, which is a
call to map:
�

�

�

	

[9] Main 27 map
arg 1 = { 3 -> 1, 34 -> 10, 341 -> 10 }
arg 2 = [341, 34, 3]
result = [10, 10, 1]

Exercise 7. It would appear from the code in Fig. 1 that lastDigits calls two
functions. However Buddha only gives it one child. What is the other child, and
what happened to it?

Despite the fact that map’s first argument is a function it should be pretty
clear that this application is correct:
�
�

�
	buddha: correct

286 B. Pope

Diagnosis. This last judgement leads us to a buggy node, which Buddha indi-
cates as follows:
�

�

�

	

Found a buggy node:
[8] Main 17 lastDigits

arg 1 = [341, 34, 3]
result = [10, 10, 1]

Here is where the debugging session ends. However we haven’t yet achieved
what we set out to do: find the bug in the program. Buddha has helped us a lot,
but we have to do a little bit of thinking on our own.

Exercise 8. Why did Buddha stop here? Trace through the steps in the diagnosis
that lead it to this point. Are you convinced it has found a bug? What about
those deferred derivations involving compose, is it okay to simply ignore them?

The diagnosis tells us that lastDigits returns the wrong result when ap-
plied to [341, 34, 3]. We also know that every application depended on by
lastDigits to produce this value is correct.

Exercise 9. What is the bug in the program in Fig. 1? Provide a definition of
lastDigits that amends the problem.

Retry. When we get to this point it is tempting to dust our hands, congratulate
ourselves, thank Buddha and move on to something else. However our celebra-
tions may be premature. Buddha only finds one buggy node at a time, but there
may be more lurking in the same tree. A diligent bug finder will re-run the pro-
gram on the same inputs that cause the previous bug, to see whether it has been
resolved, or whether there is more debugging to be done. Of course it is prudent
to test our programs on a large number and wide variety of inputs as well — the
testing suite QuickCheck can be very helpful for this task [4].

2.1 Try It for Yourself

Now it’s your turn to use Buddha to debug a program.
Figure 3 contains a small program for converting numbers written in base ten

notation to other bases. It is an extension of the program in Figure 1. It reads
two numbers from the user: the number to convert, and the desired base of the
output. It prints out the number written in the new base. The intended algorithm
goes as follows (all numbers are written in base ten to avoid confusion):

1. Prompt the user to enter a number and a base. Read each as a string, and
convert them to integers using the library function read (which assumes its
argument is in base ten).

2. Compute a list of “prefixes” of the number in the desired base. For example,
if the number is 1976, and the base is 10, the prefixes are ‘[1976, 197, 19,
1]’. This is the job of prefixes.

Declarative Debugging with Buddha 287

3. For each number in the above list, obtain the last digit in the desired base.
For example if the list is ‘[1976, 197, 19, 1]’, the output should be ‘[6,
7, 9, 1]’. This is the job of lastDigit.

4. Convert each (numerical) digit into a character. Following the hexadecimal
convention, numbers above 9 are mapped to a letter in the alphabet. For
example, 10 becomes ’a’, 11 becomes ’b’ and so on. This is the job of
toDigit.

5. Reverse the above list to give the digits in the desired order.

Exercise 10. Your job is to test the program to find example input values that
cause it to return the wrong result. For each set of inputs that give rise to the

1 module Main where

main = do putStrLn "Enter a number"

num <- getLine

5 putStrLn "Enter base"

base <- getLine

putStrLn (convert (read base) (read num))

convert :: Int -> Int -> String

10 convert base

= reverse .

map toDigit .

map (lastDigit base) .

prefixes base

15
toDigit :: Int -> Char

toDigit i

= index i digitChars

where

20 digitChars = [’0’ .. ’z’]

prefixes :: Int -> Int -> [Int]

prefixes base n

| n <= 0 = []

25 | otherwise = n : prefixes (n ‘div‘ base) base

lastDigit :: Int -> Int -> Int

lastDigit x = \y -> mod x y

30 index :: Int -> [a] -> a

index n list

| n == 0 = head list

| otherwise = index (n - 1) (tail list)

Fig. 3. A program for converting numbers in base 10 notation to other bases. The

program has a number of bugs.

288 B. Pope

wrong behaviour, use Buddha to diagnose the cause of the bug. Fix the program,
and repeat the process until you are convinced that the program is bug free. To
get started, try using the program to convert 1976 to base 10. The expected
output is 1976, however program produces :0:.

3 Implementation

In this section we look at how Buddha is implemented. Space constraints neces-
sitate a fair degree of generalisation, and you should treat it as a sketch, rather
than a blueprint.

We begin with a definition of the EDT using Haskell types. Then we look
at a useful abstraction called the Oracle, which plays the part of judge in the
debugger. After the Oracle, we consider a simple bug diagnosis algorithm over
the EDT. Then we discuss the process of turning arbitrary values into textual
forms which are suitable for printing on the terminal. Of particular interest
is the way that functions are handled. Lastly, we compare two transformation
algorithms that introduce code into the debuggee for constructing the EDT.

3.1 The Evaluation Dependence Tree

The Evaluation Dependence Tree (EDT) provides a high-level semantics for the
evaluation of a Haskell program, and is at the heart of Buddha. Nodes in the tree
contain derivations which show the value of function applications and constants
that were needed in the course of the program execution. Edges between the
nodes indicate an evaluation dependence which can be related directly to the
structure of the source code. Figure 4 illustrates the EDT for the program studied
in the previous section. Figure 5 shows Haskell types for describing the EDT.

Each node in the EDT has a unique integer identity, a derivation, and zero
or more children nodes. Each derivation names a function or a constant, zero or
more argument values, a result value and a source location (constants have zero
arguments and functions have at least one).

Perhaps the most interesting type in Fig. 5 is Value. It has one constructor,
called V, which is polymorphic in the type of its argument, however that type is
concealed. This means that the EDT can refer to a heterogeneous collection of
types without breaking Haskell’s typing rules. You might wonder how we retrieve
something from its Valuewrapper. The solution to this problem is discussed later
in Sec. 3.4.

Explicit quantification of type variables are not part of the Haskell 98 stan-
dard, however the style used here is widely supported.

3.2 The Oracle

The debugging example in Sec. 2 shows how Buddha interacts with the user.
A basic assumption of the Declarative Debugging algorithm is the existence of
someone or something that knows how to judge derivations. It is natural to think

Declarative Debugging with Buddha 289

(
.
)

{

[
3
4
1
,

3
4
,

3
,

0

.
.

?

−
>

[
1
,

1
0
,

1
0
]

}

{

3
4
1

−
>

[
3
4
1
,

3
4
,

3
,

0

.
.

?

}

3
4
1

=
>

[
1
,

1
0
,

1
0
]

m
a
i
n

=
>

<
I
O
>

d
i
g
i
t
s

3
4
1

=
>

[
1
,

1
0
,

1
0
]

(
.
)

{

[
3
4
1
,

3
4
,

3
]

−
>

[
1
,

1
0
,

1
0
]

}

{

[
3
4
1
,

3
4
,

3
,

0

.
.

?

−
>

[
3
4
1
,

3
4
,

3
]

}

[
3
4
1
,

3
4
,

3
,

0

.
.

?

=
>

[
1
,

1
0
,

1
0
]

(
.
)

{

[
1
0
,

1
0
,

1
]

−
>

[
1
,

1
0
,

1
0
]

}

{

[
3
4
1
,

3
4
,

3
]

−
>

[
1
0
,

1
0
,

1
]

}

[
3
4
1
,

3
4
,

3
]

=
>

[
1
,

1
0
,

1
0
]

p
r
e
f
i
x
e
s

3
4
1

=
>

[
3
4
1
,

3
4
,

3
,

0

.
.

?

l
e
a
d
i
n
g
N
o
n
Z
e
r
o
s

[
3
4
1
,

3
4
,

3
,

0

.
.

?

=
>

[
3
4
1
,

3
4
,

3
]

l
a
s
t
D
i
g
i
t
s

[
3
4
1
,

3
4
,

3
]

=
>

[
1
0
,

1
0
,

1
]

m
a
p

{

3

−
>

1
,

3
4

−
>

1
0
,

3
4
1

−
>

1
0

}

[
3
4
1
,

3
4
,

3
]

=
>

[
1
0
,

1
0
,

1
]

r
e
v
e
r
s
e

[
1
0
,

1
0
,

1
]

=
>

[
1
,

1
0
,

1
0
]

F
ig

.
4
.
A

n
E

D
T

fo
r

th
e

p
ro

g
ra

m
in

F
ig

.
1
.
D

o
tt

ed
ed

g
es

in
d
ic

a
te

su
b
tr

ee
s

w
h
ic

h
h
av

e
b
ee

n
tr

u
n
ca

te
d

fo
r

b
re

v
it
y.

290 B. Pope

type Identifier = String

type LineNumber = Int

type FileName = String

type SrcLoc = (FileName, LineNumber)

-- note the explicit quantifier in this type
data Value = forall a . V a

data Derivation

= Derivation

{ name :: Identifier

, args :: [Value]

, result :: Value

, location :: SrcLoc }

data EDT

= EDT

{ nodeID :: Int

, derivation :: Derivation

, children :: [EDT] }

Fig. 5. Haskell types for implementing the EDT

of the judge as a person sitting behind a computer terminal. However the role
of judge can be automated to a certain degree.

Buddha delegates the task of judgement to an entity called the Oracle. Cur-
rently the Oracle is a hybrid of software and human input. The diagnosis al-
gorithm passes derivations to the Oracle which returns a judgement. The goal
of the software part is to reduce the number of derivations seen by the user. It
keeps a database that records pairs of derivations and judgements, which is pop-
ulated by prior responses from the user. If a derivation has been seen before, the
corresponding judgement is retrieved from the database. Derivations never seen
before are printed on the terminal and judged by the user, and the judgement is
saved in the database. There is much room for improvement on the software side.
An obvious extension is to allow the database to be saved between debugging
sessions.

Exercise 11. Can you think of other features that might be useful in the software
part of the Oracle?

3.3 Diagnosis

Figure 6 shows a very simple Declarative Debugging algorithm in Haskell.

Exercise 12. Extend the diagnosis algorithm to collect a set of buggy nodes.

The method for obtaining the EDT depends on the underlying implementa-
tion of the debugger. In the above diagnosis algorithm that detail is left abstract.

Declarative Debugging with Buddha 291

data Judgement = Correct | Erroneous

data Diagnosis = NoBugs | Buggy Derivation

debug :: Diagnosis -> [EDT] -> IO Diagnosis

debug diagnosis [] = return diagnosis

debug diagnosis (node:siblings)

= do let thisDerivation = derivation node

judgement <- askOracle thisDerivation

case judgement of

Correct -> debug diagnosis siblings

Erroneous

-> debug (Buggy thisDerivation) (children node)

askOracle :: Derivation -> IO Judgement

askOracle derivation = ... -- abstract

-- the top level of the debugger
main :: IO ()

main

= do root <- get the root of the EDT
diagnosis <- debug NoBugs [root]

case diagnosis of

NoBugs -> output: no bugs found
Buggy derivation -> output: this derivation is buggy

Fig. 6. Pseudo Haskell code for a Declarative Debugging diagnosis algorithm

Later, in Sec. 3.5, we’ll see two different ways that have been used in Buddha to
produce the tree.

3.4 Observation

Buddha must be able to turn values into text if it is going to print them on the
terminal. An important condition is that it must be able to print any value. In
short, we want a universal printer. Unfortunately there is no standard way of
doing this in Haskell, and GHC does not supply one, so Buddha must provide
its own.7

There are a number of requirements that make the task quite hard:

– It must be possible to observe partial values, and reveal their unevaluated
parts without forcing them any further.

– Some values can have cyclic representations. The printer must not generate
infinite strings for these.

– It must be able to print functions.

7 Hugs does have a universal printer of sorts, but it has poor support for functions,
and regardless, Hugs is too slow to support Buddha.

292 B. Pope

To implement the printer we need reflection, however Haskell is not particu-
larly strong in this regard. For example, there is no facility to determine whether
something is a thunk. We work around the restrictions at the Haskell level by in-
terfacing with the runtime environment via the Foreign Function Interface (FFI).
That is, we extend GHC’s runtime environment with reflective facilities, by the
use of C code that observes the representation of values on the GHC heap. The
C code constructs a Haskell data structure, of type Graph, that mirrors the heap
representation, including the presence of thunks and cycles.

Graph has the following definition:

data Graph
= AppNode Word String [Graph]
| CharNode Char
| IntNode Int
| IntegerNode Integer
| FloatNode Float
| DoubleNode Double
| Cycle Word
| Thunk
| Function

AppNode represents applications of data constructors. It has three arguments:
its address on the heap, the name of the constructor and a list of the arguments
to the application (for nullary constructors the list is empty). Specialised Graph
constructors are provided for the primitive types (CharNode etcetera). Cycles in
the heap representation are encoded with the Cycle constructor, its argument is
the address of a constructor application — in other words it is a pointer back to
some other part of the object. Unevaluated heap objects are mapped to Thunk,
and all functions are mapped to Function (although this apparent limitation
will be addressed shortly).

Exercise 13. In Sec. 2 we saw the partial list [341,34,3,0,..?. Recall that the
tail of the list indicated by ..? is a thunk. Provide a Graph encoding of that
list. You can assume that the numbers are of type Int. The memory addresses
of constructor applications are not important — just make them up.

The interface to the reflection facility is as follows:

reifyValue :: Value -> IO Graph
reifyValue (V x) = reify x

reify :: a -> IO Graph
reify x = ... -- call C code via the FFI

The function reifyValue retrieves an item encapsulated inside a Value, and
passes it to reify, which maps it into a Graph. The typing rules of Haskell
forbid us from exposing the type of the item. Thus it is crucial that reify is
polymorphic in its first argument. This is easily satisfied by performing all the

Declarative Debugging with Buddha 293

Graph construction work in C. From the C perspective all values have the same
type (a heap object), so there is no limitation on the type of value that can be
passed down through reify.

Exercise 14. What have we sacrificed by observing values on the heap via the
FFI?

The result of reify has an IO type. This is necessary because multiple appli-
cations of reify to the same value may give back different Graphs. For example,
the presence or absence of thunks and cycles in a value depends on when it is
observed. Buddha ensures that values are observed in their most evaluated form
by delaying all calls to reify until the evaluation of the debuggee has run to
completion — at that point it knows their heap representations will not change.

Cycles. Cyclic values are not uncommon in Haskell. The classic example is the
infinite list of ones:

ones = 1 : ones

The non-strict semantics of Haskell allow programs to operate on this list without
necessarily causing non-termination. It is worth pointing out that the language
definition does not require this list to be implemented as a cyclic structure,
however all of the popular compilers currently do. Here is a Graph representation
of the list, assuming that it lies at address 12:

AppNode 12 ":" [IntNode 1, Cycle 12]

Buddha’s default mode of showing cyclic values is rather naive. It prints this list
as:

[1, <cycle>

This indicates the origin of the cycle, but not its destination. Buddha has another
mode of printing which uses recursive equations to show cycles. You can turn
this mode on with the set command:
�
�

�
	buddha: set cycles True

In this mode the list is printed as:

let _x1 = [1, _x1 in _x1

You might wonder why Buddha doesn’t use the second mode by default. Our
experience is that for larger values with cycles it can actually make the output
harder to comprehend! In any case, it is often preferable to view complex struc-
tures as a diagram, which can be done with the draw command. In Sec. 2 we
saw how to use draw to produce a diagram of the EDT, using the Dot graph
language. You can also use this command for printing values that appear as
arguments or results in derivations.

294 B. Pope

Suppose the current derivation contains ones. The following command ren-
ders the result of ones and saves the output in the file buddha.dot:

�
�

�
	buddha: draw result

As before, you can view the diagram with the dotty program, the output of
which looks like this:

1

:

If you want to draw an argument at position 3, for instance, you can issue the
command:

�
�

�
	buddha: draw arg 3

Functions. Functions are more troublesome beasts when it comes to printing
because they are abstract types. Ordinary data structures have constructors
which can be inspected in the heap and printed in a straightforward manner,
but the internal, compiled representation of functions is very hard to reconcile
with the source code.

The solution goes as follows. Each function that could possibly be printed is
assigned a unique integer. An entry is added to a global table whenever such a
function is applied, recording the number of the function, its argument and its
result. Table entries have this type:

type FunApplication = (Int, Value, Value)

Exercise 15. Why is it possible to record only one argument? How do you think
multi-argument functions are handled?

Functions and their unique number are “wrapped up” inside a new type
called F:

data F a b = F Int (a->b)

This ensures that the function and the number are always together. Wrappers are
introduced as part of the program transformation, however the unique numbers
are created dynamically.

Wrapped functions are passed to reify in the usual way, resulting in a Graph
value such as:

AppNode 28 "F" [IntNode 4, Function]

Declarative Debugging with Buddha 295

Obviously the printer does not treat this like an ordinary data structure. The
presence of the F constructor indicates that the Graph represents a function. In
the above example, the function is identified by the number 4. The printer scans
the global table and collects all records that correspond to this function.

For example, suppose the global table contains these records:

[(1, V True, V False)
, (2, V 12, V 3)
, (1, V False, V True)
, (4, V "ren", V 3)
, (3, V (’a’, ’b’), V ’a’)
, (4, V "stimpy", V 6)
, (2, V 16, V 4)
]

The entries pertaining to function number 4 are underlined. The arguments and
results in the records are Values that must be converted to Graphs before they
can be printed. In this example function number 4 would be printed in the
following way:

{ "ren" -> 3, "stimpy" -> 6 }

The part of the transformation that deals with function wrapping is quite
simple. It consists of three parts. First, wrappers must be introduced where
functional values are created (lambda abstractions and partial applications).
Second, when a wrapped function is applied it must be unwrapped and the
application must be recorded in the global table. Third, function types must be
changed to reflect the wrapping.

Let’s consider a small example using code from Fig. 1. In lastDigits’s body,
map is applied to the expression (10 ‘mod‘). That expression is a function which
must be wrapped up. We introduce a family of wrappers, funn, where n indicates
the arity of the function to be wrapped. The first three of those wrappers have
the following types:

fun1 :: (a -> b) -> F a b
fun2 :: (a -> b -> c) -> F a (F b c)
fun3 :: (a -> b -> c -> d) -> F a (F b (F c d))

Exercise 16. Why do we have multiple wrapping functions? Would one suffice?

In our example, the expression (10 ‘mod‘) has an arity of one, so the defi-
nition of lastDigits is transformed like so:

lastDigits :: Int -> Int
lastDigits = map (fun1 (10 ‘mod‘))

The definition of map must also be transformed:

map :: F a b -> [a] -> [b]
map f [] = []
map f (x:xs) = apply f x : map f xs

296 B. Pope

The first parameter, called f, will be bound to a wrapped function when map
is applied. This requires two changes. First, the type is changed to indicate the
wrapping: (a->b) becomes F a b. Second, where f is applied to x, it must be
unwrapped, and the application must be recorded. The job of unwrapping and
recording is done by apply, which has this definition:

apply :: F a b -> a -> b
apply (F unique f) x

= let result = f x in updateTable unique x result

updateTable :: Int -> a -> b -> b

Updates to the global table are made by updateTable, by means of (gasp)
impure side-effecting code!

A curious user can view the contents of the global table using the dump
command as follows:
�
�

�
	buddha: dump funs

Use this command with caution: the table can get quite big.

Exercise 17. The transformation of map shows that some function type annota-
tions must be changed to accommodate wrapping. Where else in the program
will types have to be changed?

Exercise 18. We have multiple wrapping functions, one for each level of function
arity, yet we only have one apply. How is this possible?

3.5 Transformation

The purpose of the transformation is to introduce code into the debuggee for
constructing the EDT. In the development of Buddha we have experimented
with two different styles of transformation. The first style builds the tree in a
purely functional way, whilst the second style builds the tree in a table by means
of impure side-effects. The current version of Buddha employs the second style
for a combination of efficiency concerns and programming convenience.

To help with the presentation we’ll consider both styles of transformation
applied to the following code for naive reverse:

rev :: [a] -> [a]
rev xs

= case xs of
[] -> []
y:ys -> append (rev ys) [y]

append :: [a] -> [a] -> [a]
append xs ys

= case xs of
[] -> ys
z:zs -> z : append zs ys

Declarative Debugging with Buddha 297

The Purely Functional Style. In the first style each function definition is
transformed to return a pair containing its original value and an EDT node.
Applications in the body of the function return nodes which make up its children.

Figure 7 shows the result of transforming rev using this style.

rev xs

= case xs of

[] -> let result = []

children = []

node = edt name args result children

in (result, node)

y:ys -> let (v1, t1) = rev ys

(v2, t2) = append v1 [y]

result = v2

children = [t1, t2]

node = edt name args result children

in (result, node)

where

name = "rev"

args = [V xs]

Fig. 7. Purely functional style transformation of rev

Note the decomposition of the nested function application from the second
branch of the case statement:

before after
append (rev ys) [y] −→ (v1, t1) = rev ys

(v2, t2) = append v1 [y]

The variables v1 and v2 are bound to the original value of the intermediate
applications, and t1 and t2 are bound to EDT nodes.

Figure 8 shows the transformation of append, which follows the same pattern
as rev.

Upon first inspection the effect of the transformation might appear somewhat
daunting. However, it is actually only doing two things: constructing a new EDT
node for the application of the function and, in the process of doing that, collect-
ing its children nodes from the applications that appear in the body. To simplify
things we make use of a helper function called edt which constructs a new EDT
node from the function’s name, arguments, result and children (we’ve skipped the
source location for simplicity). The apparent complexity is largely due to the fact
that the computation of the original value and the EDT node are interwoven.

This style of transformation is quite typical in the literature on Declarative
Debugging. Variants have been proposed by [5], [6], and [7], amongst others.

The main attraction of this style is that it is purely functional. However,
support for higher-order functions is somewhat challenging. The naive version of
the transformation assumes that all function applications result in a value and

298 B. Pope

append xs ys

= case xs of

[] -> let result = ys

children = []

node = edt name args result children

in (result, node)

z:zs -> let (v1, t1) = append zs ys

result = z : v1

children = [t1]

node = edt name args result children

in (result, node)

where

name = "append"

args = [V xs, V ys]

Fig. 8. Purely functional style transformation of append

an EDT node, although this is only true for saturated applications. An initial
solution to this problem was proposed in [7] and improved upon in [8].

Exercise 19. What are the types of the transformed versions of rev and append?

Exercise 20. Apply this style of transformation to the definition of map from
Fig. 1? How will you deal with the application of the higher-order argument f
in the body of the second equation?

The Table-Based Approach. The second style is based on the concept of
reduction numbering. It introduces code which, at runtime, causes each reduced
function application to be uniquely numbered. For each application, the func-
tion name, its arguments and its result are stored in a global table, which is
indexed by the number of the application. The global table is thus a collection
of all the derivations in the EDT. Table entries also record the parent number
of the derivation. Parent numbers are passed down through the call graph to
their children by extending each function with a new integer argument. When
execution of the debuggee is complete a single pass is made over the table to
construct the EDT.

Figure 9 shows the transformation of rev in this style.

rev :: Int -> [a] -> [a]

rev parent xs

= addNode parent "rev" [V xs]

(\n -> case xs of

[] -> []

y:ys -> append n (rev n ys) [y])

Fig. 9. Table-based transformation of rev

Declarative Debugging with Buddha 299

Notice the new type of rev, in particular its first argument is now an integer
which corresponds to the unique number of its parent. The task of assigning new
unique numbers for each application of rev is performed by the helper function
addNode, whose type is as follows:

addNode :: Int -> String -> [Value] -> (Int -> a) -> a

Each call to addNode does four things:

1. generate a new unique number for the current application;
2. pass that number into the body of the transformed function;
3. record an entry for the application in the global table;
4. return the value of the application as the result.

Writes to the global table are achieved via impure side effects.
The number for each application of rev is passed to the calls in its body

through the variable n, which is introduced by lambda abstraction around the
original function body. The idea is that the new function body — the lambda
abstraction — is applied to each new number for rev inside addNode. Hence the
type of addNode’s fourth argument is (Int -> a), where n takes the value of
the Int and a matches with the type of the original function’s result.

Figure 10 shows the transformation of append, which follows the same pattern
as rev.

append :: Int -> [a] -> [a] -> [a]

append parent xs ys

= addNode parent "append" [V xs, V ys]

(\n -> case xs of

[] -> ys

z:zs -> z : append n zs ys)

Fig. 10. Table-based transformation of append

Exercise 21. Consider the transformation of some constant, such as:

goodDay = (12, January, 1976)

The discussion of the transformation above suggests that we would give goodDay
an integer argument to represent its parent number. Can you foresee any prob-
lem(s) with this in regards to how often goodDay is evaluated? How might you
fix it? Hint: Ideally each constant should have at most one entry in the global
table. However, you will still want to record each time another entity refers to a
constant.

You might have noticed some similarity between the use of a global table
in this section to record derivations and the use of a global table to record
applications of higher-order functions in Sec. 3.4. Indeed they share some un-
derlying machinery for performing impure updates of the tables. Just like the

300 B. Pope

function table, you can also see the contents of the derivation table, using the
dump command:
�
�

�
	buddha: dump calls

Again, for long running programs the table can get quite large, so be careful
with this command, it can produce a lot of output.

The main advantage of the impure table transformation over the purely func-
tional is that it tends to decouple the generation of the EDT and and evaluation
of the debuggee. This means that we can stop the debuggee at any point and
still have access to the tree produced up to that point. Declarative diagnosis can
often be applied to a partial tree. In the purely functional style this is possible
but more complicated. The separation makes the handling of errors easier. It
doesn’t matter if the debuggee crashes with an exception, the table is still easily
accessible to the debugging code. In the purely functional style the evaluation
of the debuggee and the production of the EDT are interwoven, which makes it
harder to access the EDT if the debuggee crashes.

The main problem with the second transformation style is that it relies on
impure side effects to generate new unique numbers and make updates to the
global table. It is possible that with some clever programming the side effects
could be avoided, but we speculate that this will be at a significant cost to
performance. Without more investigation it is difficult to be definitive on that
point. The problem with the use of impure side effects is that they do not sit
well with the semantics of Haskell. As the old saying goes:

If you lie to the compiler, it will get its revenge.

This is certainly true with GHC, which is a highly optimising compiler. Covert
uses of impure facilities tend to interact very badly with the optimisations that
it performs, and one must program very carefully around them. We could turn
the optimisations off, however that would come at the cost of efficiency in the
debugging executable, which is something we want to avoid.

4 Judgement

The Oracle is assumed to have an internal set of beliefs about the intended
meaning of each function and constant in the program. We call this the In-
tended Interpretation of the program. Derivations in the EDT reveal the actual
behaviour of the program. Judgement is the process of comparing the actual
behaviour of functions and constants with their intended behaviour. Differences
between the two are used to guide the search for buggy nodes.

4.1 Partial Functions

In the simple debugging algorithm described in Sec. 3.3 judgement is a binary
decision: a derivation is either correct or erroneous. Our experience is that the

Declarative Debugging with Buddha 301

binary system does not always suit the intuition of the user and we extend it
with two more values: unknown and inadmissible.

Some derivations are just too complicated to be judged. Perhaps they contain
very large values, or lots of higher-order code, or lots of thunks. The best choice
is to defer judgement of these derivations. However, deferral might only postpone
the inevitable need for a judgement. If deferral does not lead to another path to
a bug the Oracle can judge a difficult derivation as unknown. If a buggy node
is found which has one or more unknown children, Buddha will report those
children in its final diagnosis, and remind the user that their correctness was
unknown. The idea is that the true bug may be either due to the buggy node or
one or more of its unknown children, or perhaps one of their descendents.

For some tasks it is either convenient or necessary to write partial functions:
functions which are only defined on a subset of their domain. Most functional
programmers have at some point in their life experienced program crash because
they tried to take the head of an empty list. An important question is how to
judge derivations where the function is actually applied to arguments for which
there is no intended result?

Consider the merge function which takes two sorted lists as arguments and
returns a sorted list as output containing all the values from the input lists.
Due to a bug in some other part of the program it might happen that merge is
given an unsorted list as one of its arguments. In this case Buddha might ask the
Oracle to judge the following derivation:

[32] Main 12 merge
arg 1 = [3,1,2]
arg 2 = [5,6]
result = [3,1,2,5,6]

Let’s assume for the moment that our definition of merge is correct for all sorted
arguments. Is this derivation correct or erroneous? If we judge it to be erroneous
then Buddha will eventually diagnose merge as buggy, assuming that merge only
calls itself. This is a bad diagnosis because the bug is not due to merge, rather
it is due to which ever function provided the invalid argument. To find the
right buggy node we could judge the derivation to be correct. However, it feels
counter-intuitive to say that a derivation is correct when it should never have
happened in the first place. In such circumstances it is more natural to say
that the derivation is inadmissible. It has exactly the same effect as judging the
derivation to be correct, yet it is a more accurate expression of the user’s beliefs.

4.2 Partial Values

Non-strict evaluation means that not all computations will necessarily reach
normal forms in the execution of a program. Consider the following definition of
boolean conjunction:

(&&) :: Bool -> Bool -> Bool
(&&) False _ = False
(&&) True x = x

302 B. Pope

In the application ‘(&&) False exp’, the value of exp is not needed, so it will
remain as a thunk. It would not be prudent for the debugger to force the evalu-
ation of exp to find its value, first because the computation might be expensive,
and second, in the worst case is might trigger divergence (exp might be non-
terminating or it might raise an exception).

Thunks that remain at the end of the program execution cannot be the cause
of any observed bugs, so it ought to be possible to debug without knowing their
value. Therefore, thunks are treated by Buddha as unknown entities, and it prints
a question mark whenever it encounters one. In the above example, this would
lead to the following derivation:

[19] Main 74 &&
arg 1 = False
arg 2 = ?
result = False

How do you judge derivations that have question marks in them? One approach
is to assume that the Oracle has an intended meaning for functions with all
possible combinations of partial arguments and results. This is convenient for us
as designers of the debugger, but it is not very helpful for the user.

Generally it is easier for the user to model their intended interpretation on
complete values. It tends to simplify the task of saying what a function should
do if you ignore the effects of computation (i.e. strictness and non-termination)
and think in terms of abstract mathematical functions. In this sense you can say
the intended interpretation of && is merely the relation:

(True, True, True), (True, False, False)
(False, True, False), (False, False, False)

A derivation with partial arguments is correct if and only if all possible instan-
tiations of those partial arguments agree with the intended interpretation. The
above derivation for && is correct because, according to the relation above, it
doesn’t matter whether we replace the question mark with True or False, the
result is always False.

Of course && is a very simple example, and many interesting functions are
defined over large or even infinite domains, where it is not feasible to enumerate
all mappings of the function. In such cases the user might have to do some
reasoning before they can make a judgement.

Exercise 22. Judge these derivations (the module names, line numbers and deri-
vation numbers are irrelevant).

[6] Main 55 length
arg 1 = ?
result = 0

[99] Main 55 length
arg 1 = [?]
result = 1

Declarative Debugging with Buddha 303

It is also possible to encounter partial values in the result of a derivation.
Consider the swap function:

swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

It might be the case that the program only needs the first component of the
output tuple, while the second component remains a thunk, such as:

[19] Boo 7 swap
arg 1 = (?, 12)
result = (12, ?)

When the output contains a partial value the derivation is correct if and only if
for all possible instances of the arguments there exists a instance of the result
which agrees with the intended interpretation.

Exercise 23. Judge these derivations:

[6] Main 22 reverse
arg 1 = [1,2,3]
result = ?

[99] Main 22 reverse
arg 1 = [1,2,?]
result = [1,?,?]

5 Resource Usage

For all but the briefest runs of a program it is totally infeasible to consider
every function application. In long running programs you will be swamped with
derivations, and most likely all of your available heap space will be consumed.
One way to reduce the number of derivations (and memory usage at the same
time) is to limit the range of functions considered by the debugger. Hopefully
you will have some feeling for where the bug is in your program, and also which
parts are unlikely to be involved. Unit testing can be quite helpful in this regard.
Instead of just testing the program as a whole, one may test smaller pieces of
code separately. A failed unit test gives a much narrower scope for the bug, and
allows any code not touched by the test to be trusted. One may even debug
specialised versions of the program that only execute the top call in a failed test
case, thus avoiding the extra cost of executing large amounts of trusted code.
This idea is discussed in the context of tracing in [9]. Unit tests are supported
in Haskell by QuickCheck [4], and also HUnit8.

The EDT maintains references to the arguments and results of each function
application. This means that such values cannot be garbage collected as they
might have been in the evaluation of the original program. By not creating nodes
8 http://hunit.sourceforge.net

304 B. Pope

for every function application we allow some values to be garbage collected. Fewer
nodes generally means less memory is needed and less questions will be asked.

How do you reduce the number of nodes in this tree? You can prune it stat-
ically by telling Buddha which functions you trust and which ones you suspect.
For each module in the program you can provide an options file that tells Bud-
dha what to do for each function in the module. If the module’s name is X, the
options file is called called X.opt, and it must be stored in the Buddha directory.
The syntax of the options file is very simple. It has a number of lines and each
line specifies what kind of transformation you want for a given function.

Here’s what you might write for some program:

_ ; Trust
prefixes ; Suspect
convert ; Suspect

Each line contains the name of the function, a semi-colon and then an option
as to what kind of EDT node you want. The underscore matches with anything
(just like in Haskell patterns), so the default is specified on the first line to be
Trust. Any function which is not mentioned specifically gets the default option.
If there is no such default option in the whole file, then the default default is
Suspect. In the case when no option file is present for a module, every function
in the module is transformed with the Suspect option.

What do the options mean?

– Suspect: Create a full node for each application of this function. Such a node
will record the name of the function, its arguments and result, its source
location and will have links to all of its children. However, the children
will be transformed with their own options which will not necessarily be
Suspect. This option tends to make Buddha use a lot of memory, especially
for recursive functions, so please use it sparingly.

– Trust: Don’t create a node for applications of this function, but collect any
children that this function has.

Another way to reduce the size of the EDT is to make use of re-evaluation.
The idea is that only the top few levels of the EDT are produced by the ini-
tial execution of the debuggee. Debugging commences with only a partial tree.
Eventually the traversal of the EDT might come to a derivation whose children
were not created in the initial run. The debugger can regenerate the children
nodes by forcing the re-evaluation of the function application at the parent. In
the first execution of the debuggee, the children are pruned from the EDT. The
purpose of re-evaluating the call at the parent is to cause the previously pruned
children nodes to be re-generated. This allows the EDT to be constructed in a
piecemeal fashion, at the cost of some extra computation time during the debug-
ging session — a classic space/time tradeoff. Re-evaluation was implemented in
a previous version of Buddha, for the purely functional style of transformation,
see [10]. However, it has yet to be incorporated into the latest transformation
style.

Declarative Debugging with Buddha 305

6 Further Reading

Phil Wadler once wrote:

Constructing debuggers and profilers for lazy languages is recognised as
difficult. Fortunately, there have been great strides in profiler research,
and most implementations of Haskell are now accompanied by usable
time and space profiling tools. But the slow rate of progress on debuggers
for lazy functional languages makes us researchers look, well lazy. [11]

While it is true that debugging technology for lazy functional languages
hasn’t set the world on fire, there has nonetheless been a fair amount of im-
provement since Wadler made that remark.

Perhaps the most significant tool for debugging Haskell is Hat [12]. Like
Buddha, Hat is based on program transformation. However Hat-transformed
programs produce a very detailed program trace, called a Redex Trail, which
explains the reduction history of each expression in the program. The trace is
written to a file rather than main memory. This means that the memory usage
of a transformed program stays proportional to the usage of the original pro-
gram, although at the expense of very large trace files. The best feature of the
trace is that it can be viewed in many different ways. Hat provides a handful
of browsing tools, that are useful for diagnosing different kinds of bugs. A very
helpful tutorial on the use of Hat in combination with with QuickCheck was
presented at the Advanced Functional Programming School in 2002 [9]. Much of
the technology in Hat is based on earlier work by Sparud [6], who also proposed
a program transformation for Declarative Debugging, quite similar to Buddha.

A popular debugging tool for Haskell is Hood [13]. Hood provides a library
function called observe, which can be used to log the evaluation of expres-
sions in the program. In essence it provides a sophisticated form of the so-called
printf style of diagnostic debugging. A particularly nice aspect of Hood is that
it can observe functional values and partial data structures, without changing
the declarative semantics of the underlying program. A negative aspect of Hood
is that the user must modify the source code of their program to insert the
observations. Such modifications can be a problem for program maintenance.

Another declarative debugger, called Freya, was implemented by Nilsson, for
a large subset of Haskell [14]. The main difference from Buddha is that Freya
makes use of a modified runtime environment to construct the EDT, rather than
by program transformation. An advantage of the Freya approach is that the
debugger has intimate knowledge and influence over the mechanics of program
evaluation. The most obvious benefit is a sophisticated re-evaluation scheme
which allows the EDT to be created in a piecemeal fashion [15]. The downside
of the Freya approach is that it requires a whole new compiler and runtime
environment, which is difficult to maintain and port.

Buddha is based predominantly on the pioneering work of Naish and Bar-
bour [16,17,18,5,19]. Their ideas have also influenced the development of a declar-
ative debugger for logic/functional languages such as Toy and Curry [7].

306 B. Pope

Optimistic evaluation of Haskell can reduce the gap between the structure
of the code and the evaluation order by reducing most function arguments ea-
gerly [20]. This is the basis for a step-based debugger called HsDebug [21], built
on top of an experimental version of the Glasgow Haskell Compiler. However, to
preserve non-strict semantics the evaluator must sometimes suspend one com-
putation path and jump to another. This irregular flow of control is likely to be
hard to follow in the step-based debugging style.

Of course no paper on Declarative Debugging would be complete without a
reference to the seminal work of Shapiro, who’s highly influential thesis intro-
duced Algorithmic Debugging to the Prolog language [22], from which the ideas
of Declarative Debugging have emerged.

7 Conclusion

Buddha is by no means a finished product. At the time of writing the latest
version is 1.2, which supports all of the Haskell 98 standard. In terms of pro-
gram coverage there are a number of small improvements that need to be made,
including support for the FFI, hierarchical modules, and programs spread over
more than one directory. It seems that a fair proportion of people who have ex-
pressed an interest in using Buddha cannot do so because their code makes use
of non-standard features, like multi-parameter type classes and functional de-
pendencies. The next few development cycles of Buddha will look at supporting
the most commonly used language extensions.

The biggest limitation of Buddha is the size of the EDT. If we are going
to debug long running programs we need to manage the growth of the EDT
more effectively. On the one hand, main memory sizes are ever growing, and are
becoming increasingly cheaper. At first this looks good for Buddha because we
can fit more EDT nodes into memory. On the other hand, the rapid advances
in hardware have also given us faster CPUs, which can fill the memory more
quickly. Even if we can fit enormous EDTs into main memory we will have to
come up with smarter debugging algorithms, lest we become swamped in an
insurmountable number of derivations.

Another important area of research is Buddha’s interface with the user. For
example, at the moment, it is nigh impossible to judge a derivation that contains
very large values. There are of course many avenues to explore in this regard.
An interesting idea is to allow Buddha to be specialised to particular problem
domains. For example, if you are writing digital circuit simulators, you might
like custom printing routines that show the values in derivations in a fashion
that is closer to your mental picture of an electronic component.

Buddha also has a place in education. Haskell is used extensively in Com-
puter Science courses all over the world. Novice programmers often grapple with
difficult concepts like recursion and higher-order functions, especially when they
are explained statically in text or on the white board. Buddha can be quite help-
ful here, especially as an exploratory device. A few minutes spent browsing the
EDT can be very enlightening, even if you are not debugging the program.

Declarative Debugging with Buddha 307

Lastly, while Declarative Debugging is a useful technique for locating logical
errors in programs, it is not the final word on debugging. For starters, we need
good testing tools, such as QuickCheck, to help us identify faulty behaviour in
programs. Even better would be to automate the process of finding small input
values that cause the program to go wrong. That way the debugging sessions
are more likely to be within a manageable size. For bugs that relate to the
operational behaviour of the program, like I/O, or resource usage, we will need
to look elsewhere for help.

The Buddha web page provides the latest stable release of the source code, and
online versions of the user documentation: www.cs.mu.oz.au/∼bjpop/buddha.

Acknowledgements

I would like to thank all the people who have helped with the preparation of
this paper and who helped organise the 5th International Summer School on
Advanced Functional Programming. In particular: the programme committee,
Varmo Vene, Tarmo Uustalu, and Johan Jeuring, for countless hours of admin-
istration and preparation; the University of Tartu for providing such a great
location; the volunteers who made the school run very smoothly; the various
sponsors who supported the School; the reviewers of this paper for their most
helpful constructive comments; and Lee Naish for all the years of collaboration
on this project.

References

1. Nilsson, H., Spaurd, J.: The evaluation dependence tree as a basis for lazy func-
tional debugging. Automated Software Engineering 4 (1997) 121–150

2. Gansner, E., Koutsofios, E., North, S.: Drawing graphs with dot.
www.research.att.com/sw/tools/graphviz/dotguide.pdf (2002)

3. Jones, N., Mycroft, A.: Dataflow analysis of applicative programs using minimal
function graphs. In: Proceedings of the 13th ACM SIGACT-SIGPLAN symposium
on Principles of Programming Languages, Florida, ACM Press (1986) 296–306

4. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming, ACM
Press (2000) 268–279

5. Naish, L., Barbour, T.: Towards a portable lazy functional declarative debugger.
Australian Computer Science Communications 18 (1996) 401–408

6. Sparud, J.: Tracing and Debugging Lazy Functional Computations. PhD thesis,
Chalmers University of Technology, Sweden (1999)

7. Caballero, R., Rodri’guez-Artalejo, M.: A declarative debugging system for lazy
functional logic programs. In Hanus, M., ed.: Electronic Notes in Theoretical
Computer Science. Volume 64., Elsevier Science Publishers (2002)

8. Pope, B., Naish, L.: A program transformation for debugging Haskell-98. Aus-
tralian Computer Science Communications 25 (2003) 227–236 ISBN:0-909925-94-1.

9. Claessen, K., Runciman, C., Chitil, O., Hughes, J., Wallace, M.: Testing and
Tracing Lazy Functional Programs using QuickCheck and Hat. In: 4th Sum-
mer School in Advanced Functional Programming. Number 2638 in LNCS, Oxford
(2003) 59–99

308 B. Pope

10. Pope, B., Naish, L.: Practical aspects of declarative debugging in Haskell-98. In:
Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming. (2003) 230–240 ISBN:1-58113-705-2.

11. Wadler, P.: Why no one uses functional languages. SIGPLAN Notices 33 (1998)
23–27

12. Wallace, M., Chitil, O., Brehm, T., Runciman, C.: Multiple-view tracing for
Haskell: a new hat. In: Preliminary Proceedings of the 2001 ACM SIGPLAN
Haskell Workshop. (2001) 151–170

13. Gill, A.: Debugging Haskell by observing intermediate data structures. Technical
report, University of Nottingham (2000) In Proceedings of the 4th Haskell Work-
shop, 2000.

14. Nilsson, H.: Declarative Debugging for Lazy Functional Languages. PhD thesis,
Department of Computer and Information Science Linköpings Universitet, S-581
83, Linköping, Sweden (1998)

15. Nilsson, H.: How to look busy while being as lazy as ever: The implementation of a
lazy functional debugger. Journal of Functional Programming 11 (2001) 629–671

16. Naish, L.: A declarative debugging scheme. Journal of Functional and Logic
Programming 1997 (1997)

17. Naish, L., Barbour, T.: A declarative debugger for a logical-functional language.
In Forsyth, G., Ali, M., eds.: Eighth International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems — Invited
and Additional Papers. Volume 2., Melbourne, DSTO General Document 51 (1995)
91–99

18. Naish, L.: Declarative debugging of lazy functional programs. Australian Computer
Science Communications 15 (1993) 287–294

19. Naish, L.: A three-valued declarative debugging scheme. Australian Computer
Science Communications 22 (2000) 166–173

20. Ennals, R., Peyton Jones, S.: Optimistic evaluation: an adaptive evaluation strat-
egy for non-strict programs. In: Proceedings of the Eighth ACM SIGPLAN Con-
ference on Functional Programming. (2003) 287–298

21. Ennals, R., Peyton Jones, S.: HsDebug: Debugging lazy programs by not being
lazy. In Jeuring, J., ed.: ACM SIGPLAN 2003 Haskell Workshop, ACM Press
(2003) 84–87

22. Shapiro, E.: Algorithmic Program Debugging. The MIT Press (1982)

Server-Side Web Programming in WASH

Peter Thiemann

Institut für Informatik, Universität Freiburg,
Georges-Köhler-Allee 079, D-79110 Freiburg, Germany

thiemann@informatik.uni-freiburg.de

Abstract. WASH makes server-side Web programming as easy as pro-
gramming a stand-alone application with an XHTML-based GUI. Start-
ing from an interaction graph model of the application where nodes
model web pages and edges correspond to form submissions, each node is
implemented by a WASH function and the edges correspond to function
invocation. Nodes can be decomposed further into “pagelets”, which are
XHTML fragments bundled with associated logic.

We give an introduction to the concepts of WASH programming with
this methodology and advocate the design of interactive web functional-
ity in terms of such pagelets. The two components of a pagelet may be
specified monolithically or in separation. Pagelets may also be composed
up to an entire WASH page. The development of a web-based logging
application serves as a running example.

1 Introduction

The basic idea of a web-based application is to make a software system accessible
to the general public by

– creating its user interface in terms of XHTML pages and
– placing the underlying functionality on a web server.

This approach has the appeal that deployment and maintenance of the appli-
cation can be done centrally on the web server, the application works in a dis-
tributed setting without requiring the design of application-specific protocols,
and no specific software needs to be installed on the clients. That is, input and
output is based entirely on XHTML where input is specified either by navigation
via hyperlinks or by using XHTML forms. A form provides an editable associa-
tion list for entering strings and a means to specify where the association list is
to be sent.

However, web applications suffer from some peculiarities that complicate
their development. There are three principal causes for these peculiarities: the
stateless nature of HTTP, the unusual navigation facilities offered by a web
browser, and the reliance on untyped, string-based protocols.

The Hypertext Transfer Protocol [3] is build around the simple idea of a
remote method invocation: a client sends a request message that determines
an object on the server, a method that should be invoked on the object, and

309–330, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

310 P. Thiemann

parameters for this method. The server performs the requested operation and
returns the results wrapped in a response message. After this exchange, the
connection between client and server is closed (logically, at least) and the next
message from the same client is treated like any other message because the
HTTP-server does not keep any information about processed requests. Hence,
there is no intrinsic notion of a session between a particular client and the server
where the responses depend on the session history of the client. On the user level,
however, most applications require a notion of session where a user proceeds step
by step, is aware of the session’s history, and can issue commands depending
on the current state of the session. Clearly, there is a semantic gap between
the interface provided by HTTP and the interface desired by the application
program.

Web browsers offer advanced navigation that goes beyond the facilities typ-
ically offered in user interfaces [6]. In particular, browsers maintain a history
list of previously visited web locations and offer forward and backward buttons
to navigate freely within this list. Browsers also maintain bookmarks which are
pointers to previously visited locations. Bookmarked locations may be revisited
any time by selecting them from the appropriate menu. Some browsers allow to
clone an existing window or open a link in a new window and continue inde-
pendently with both windows. Finally, it is possible to save the contents of a
window to a file and point the browser to that file later on. While these facilities
are helpful and useful for browsing a static hypertext, they make it hard to define
an appropriate concept of a session when each window is really a dynamically
generated snapshot of the state of some application.

Typical web applications rely on XHTML forms as their input facility. Be-
cause an XHTML form yields an association list and a URL where the data
should be sent, the main data exchanges in such applications are string based:
input fields in forms are named with strings, the input values are strings, and
the pointers in web pages are also strings, albeit in the format of a URL. In this
context, it is very hard to guarantee any kind of consistency. To begin with, the
field names present in a form must be a superset of the field names expected by
the program processing the form input. Otherwise, the program expects values
for inputs that are not present in the form It is even harder to give any typing
guarantees for the entered values themselves because the form processor does
not have this information.1 Finally, there is no way to guarantee that the URLs
mentioned in the hyperlinks and in a form’s action attribute correspond to the
intended functionality, in particular, when they point to scripts.

Implementors of web applications address these problems by defining their
own support for sessions or by relying on third party libraries for sessions. Quite
often, such libraries provide session objects of some sort which have to be main-
tained by the programmer. Unfortunately, many implementations of session ob-
jects only provide a mapping from a specific client to the application specific
data of the client. They often fall short of keeping track of the current locus of

1 The XForms [12] standard will improve on this situation, once implementations are
widely available. Unfortunately, its development seems to be stalled.

Server-Side Web Programming in WASH 311

control of the application.2 Hence, the developers map the control information
to file names and distribute the code of their application over as many pro-
grams as there are interaction states in the program, in the worst case. Clearly,
this approach leads to complex dependencies between the different parts of the
application. In addition, it is hard to detect if users have exercised the above-
mentioned navigation facilities, which leads to further problems and unexpected
responses from the application [5].

These considerations lead us to two questions. First, which abstractions may
be employed to shield the programmer from the problems with sessions, naviga-
tion, and consistent use of strings? Second, given an answer to the first question,
what then is a good approach for designing a web application?

The WASH system [11], a domain-specific language based on Haskell98 [7],
has satisfactory answers to the first question. Its session abstraction handles data
and control information transparently to the programmer: Data is available if
and only if it is in scope and execution continues after a form submission with a
selected callback function. Second, the implementation of sessions is compatible
with arbitrary navigation. Users can go backwards and forwards, they may clone
windows, and save pages without the application programmer providing extra
code for it3. Finally, WASH provides strongly typed interfaces based on abstract
datatypes for accessing the data entered into the application and for connecting
a form with its functionality in terms of callbacks. It thus replaces external
string consistency with lexical binding wherever possible. The implementation
of WASH can address the consistency problems once and for all because lexical
binding is fully controlled and checked by the compiler.

Our answer to the second question builds on compositionality. WASH inherits
compositionality essentially for free from the underlying Haskell language. In the
WASH context, compositionality means that web applications may be assembled
from independent pagelets, i.e., pieces of web pages which may be specified,
implemented, and tested in isolation. That is, a pagelet integrates form and
function and enables a kind of component-based programming. As pagelets are
represented by Haskell values, Haskell functions can produce them and consume
them, thus providing arbitrary means of parameterization for them. Pagelets are
thus exceptionally amenable to reuse.

The present paper starts of with an introduction to the basic concepts of the
WASH system in Section 2. The remainder, Section 3, considers a disciplined
method for developing web applications using the example of web logging. It
starts with a decomposition of the application into pagelets using a graphical
notation. Then it considers two example pagelets and shows the final wiring.
Each pagelet is naturally divided into a logic part and a presentation part. The
final Section 4 gives a brief introduction to the implementation.

2 Web programming systems that preserve the locus of control in the form of a server-
side continuation include DrScheme [4] and the Cocoon framework [1].

3 The astute reader may wonder if this claim is compatible with server-side state, like
for example a database accessible through the server. We will comment on that point
in Sec.4.

312 P. Thiemann

The spirit of the paper is that of an informal introduction and as such it
is not self-contained. Firstly, it assumes that readers have a working knowledge
of Haskell language [7] and of monadic programming[10]. Secondly, while it in-
troduces the fundamental concepts underlying WASH programming, it does not
attempt to cover the entire material. Please refer to the user manual and the on-
line documentation [11] for full coverage. Thirdly, it does not spread much light
on WASH’s implementation because its discussion would exceed the scope of the
paper. More details about the implementation may be found in the definitive ar-
ticle about WASH [9]. This article also contains a comprehensive discussion of
related work, that is, other domain specific languages for web programming and
functional approaches in particular.

2 WASH Basics

WASH provides roughly two layers of operations. The first layer provides the
session level operations: displaying a web page, performing server-side I/O op-
erations, and constructing callbacks for inclusion in forms. The second layer
deals with the construction of XHTML output, in particular the generation of
interactive widgets.

Both layers are implemented in a monad-based combinator library, each with
its own monad. The CGI monad implements the session abstraction by keeping
a log of all I/O operations. Hence, it is layered on top of the IO monad and
mediates access to it. To avoid inconsistencies between the current view of the
real world and its logged view for the running session, it is imperative that
the main function of a WASH program does not perform any IO action before
switching into the CGI monad using the function run :: CGI () -> IO ().

The document layer results from applying the monad transformer WithHTML
x to the CGI monad. Its standard incarnation WithHTML x CGI is required to
create interactive widgets. The additional functionality with respect to the base
monad CGI is an abstract interface for the generation of XHTML documents.
The extra parameter x in the type of a document constructor is not used in this
exposition. It enables the compiler to guarantee the validity of the generated
XHTML output just by providing suitable types to the constructors [9].

2.1 CGI Actions

The main operations inside of the CGI monad are io and ask:

io :: (Read a, Show a) => IO a -> CGI a

ask :: WithHTML x CGI a -> CGI ()

The function io performs an IO operation and injects its value in the CGI monad.
The type returned by the operation must be an instance of the type classes Read

Server-Side Web Programming in WASH 313

and Show because WASH relies on the methods of these classes for reading and
writing the session log (cf. Sec.4).

The function ask takes the description of an XHTML document and dis-
plays the document on the web browser. The use of WithHTML x CGI in its type
indicates that input widgets may be used to construct the document.

A WASH program is essentially a sequence of io and ask operations which
are glued together using the monadic bind and return operations. The combi-
nator ask takes as a parameter the description of a document in the WithHTML
x CGI monad. This document description embeds submission buttons with at-
tached callbacks of type CGI (). These callbacks take two kinds of parameters,
form input values and standard function parameters.

2.2 Composing XHTML Documents

If m is a monad, then WithHTML x m is a monad that extends m and additionally
creates a fragment of an XHTML document. In WASH, m is typically CGI or IO.
The internal representation of a document fragment is a sequence of document
nodes. There are several types of document nodes, inspired by the node types of
the XML document object model (DOM) [8]. The type can be one of

– Document (single child: the root element)
– Element (children: elements, attributes, text, or comments)
– Attribute (no children)
– Text (no children)
– Comment (no children)

For maximum flexibility, all document operations work in terms of sequences
of document nodes. First, there are the usual operations for manipulating se-
quences. The empty sequence is created with empty :: Monad m => WithHTML
x m (). Its implementation is the return operator of the document monad.
Sequences may be concatenated in several ways that differ mainly in the prop-
agation of the computed value.

1. The monadic sequence operator (>>) :: Monad m => m a -> m b -> m b
concatenates two sequences and returns the value computed while construct-
ing the second sequence.

2. Dually, (##) :: Monad m => m a -> m b -> m a concatenates the
sequences and returns the value computed with the first sequence.

3. The do notation as well as the standard monadic bind operator (>>=) may
also be used for concatenating sequences and for arbitrary manipulation of
the computed values.

Each type of node has a (family of) constructor operations. The root node
for a document (of type document) is constructed implicitly by the ask oper-
ator and its constructor is not directly accessible to the programmer. For each
valid element name in XHTML, there is a constructor function of the same

314 P. Thiemann

name that creates a corresponding document node. Its argument is a sequence
of child nodes for the element and it returns a singleton sequence containing just
the newly constructed element node. The element constructors automatically
extract attribute nodes from the child sequence. Thus, while there are special
constructors for attribute nodes, there are no special operations to attach an
attribute to an element. This design differs from DOM where attributes are
handled differently than other child nodes.

The attribute constructor

attr :: Monad m => String -> String -> WithHTML x m ()

takes an attribute name and its value (as strings) and creates a singleton se-
quence with just the new attribute node. Text nodes and comments also have
their special constructor functions:

comment :: Monad m => String -> WithHTML x m ()

text :: Monad m => String -> WithHTML x m ()

The argument to text and comment can be an arbitrary string. The WASH
implementation takes care of all character escapes that may be required.

2.3 Native Syntax for XHTML

In practice, most of the operators introduced in the previous Section 2.2 can be
avoided by directly putting the desired XHTML fragment into the code. The
WASH preprocessor translates all XHTML fragments in the source program to
constructor operations in the WithHTML x m monad. Inside an XHTML frag-
ment, it is possible to escape to Haskell by enclosing the Haskell code in <% and
%>. The Haskell code may be a term e or a single generator v <- e. As with
the do notation, the generator binds the variable v to the result of computation
e and the binding is available in the rest of the XHTML fragment. The type
of such a term e must be WithHTML x CGI a and the term may again contain
XHTML fragments. There is a specialized version of the code escape bracketed
by <%= and %>. It expects an expression of type String and embed its string
value as a text node in the XHTML fragment. That is, <%= e %> is equivalent
to <% text (e) %>. Further syntax is available for creating attribute nodes, for
embedding attribute values, and for including arbitrary XML files.

2.4 Example: showDate

Here is a complete program that displays the current date and time.

1 import CGI
2 import Time
3

4 main :: IO ()
5 main =

Server-Side Web Programming in WASH 315

6 run showDate
7

8 showDate :: CGI ()
9 showDate =

10 do theDate <- io $ do clk <- getClockTime
11 cal <- toCalendarTime clk
12 return (calendarTimeToString cal)
13 ask <html>
14 <head><title>The current time</title></head>
15 <body>
16 <h1>The current time</h1>
17 <%= theDate %>
18 </body>
19 </html>

The functionality for calculating the time (lines 10-12) is implemented using the
module Time (imported in line 2) from the standard library. It gets the current
time from the system and converts it to a string using the local timezone and
format information.

The import CGI in line 1 is required in every WASH program. Similarly, in
line 5-6, the main function immediately invokes the main CGI action showDate
through the run function. Because the computation of the date happens in the
IO monad, the io operator must be employed (line 10) to lift its result to the CGI
monad. Finally, the ask operator (line 13) is applied to an XHTML fragment
that contains a string embedding in line 17.

Typically, web pages are not written in isolation but rather as part of a web
site or application that comprises many pages with a similar design. Hence, a
programmer would abstract over the elements that form a standard template
for many documents. The construction of such a template does not involve any
new concepts in WASH. It is sufficient to define the template as a function of
appropriate type.

standardTemplate :: String -> WithHTML x CGI a -> CGI ()

standardTemplate title contents =

ask <html>

<head><title><%= title %></title></head>

<body>

<h1><%= title %></h1>

<% contents %>

</body>

</html>

This template provides the standard skeleton of an XHTML document and ab-
stracts over two aspects of it, a string for the title and a sequence of document
nodes for the contents. In the context of an application, the template will in-
clude further material: stylesheet references, script references, meta information,
and perhaps even parts of a standardized layout.

However, already with this simple template, the showData function becomes
considerably more concise.

316 P. Thiemann

showDate :: CGI ()

showDate =

do theDate <- io $...

standardTemplate

"The current time"

(text theDate)

As this implementation uses theDate outside of an XHTML fragment, the text
constructor is required to convert the string into a document node of type text.

2.5 Input Widgets

In GUI terminology, a widget is an area on the screen with some functionality
attached to it. In an XHTML-based GUI, each widget corresponds to an element
node in the document tree that describes the visual appearance of the GUI. To
enable the transmission of the inputs to the widget from browser to server, all
widgets have to be part of a form. In contrast to a GUI, XHTML only provides
for string-based input widgets that work in an offline manner: each input action
(filling out a text field, checking a box, making a selection, . . .) only changes
the state of the form in the browser. Only when an input action results in the
submission of the form, the browser collects the current values of the widgets in
a sequence of name-value pairs with the name indicating the widget and sends
this sequence to the web server. A server-side application has to parse the stream
of name-value pairs generated by the web browser’s form submission, extract the
needed parameters from it, and perform all desired activities on the input.

Like most web programming environments, WASH librates the programmer
from dealing explicitly with the stream of name-value pairs. However, WASH
takes the liberation one step further. The WASH programmer does not have to

– name the input widgets explicitly,
– extract the input values by widget name from some structure,
– parse strings into the actually expected values and take care of reporting

parsing errors properly.

Instead, WASH provides typed abstractions for all XHTML input widgets. Each
of them returns the input values directly in their internal representation. That
is, integers are returned as values of type Int, checkboxes return values of type
Bool, etc. In addition, programmers can define their own input value type by
providing little more than a parser for it.

Instead of naming widgets by string, the WASH constructor of an input wid-
get returns a handle for accessing the input (besides creating the XHTML re-
quired for displaying the widget). The type of the handle depends on the widget,
but each handle-type constructor is an instance of the type class InputHandle.

class InputHandle h where ...

submit :: InputHandle h

=> h INVALID -> (h VALID -> CGI ()) -> HTMLField x y ()

Server-Side Web Programming in WASH 317

The submit function is the primary means of creating a submission button in a
form, attaching a server-side callback to the button, and to pass input values to
the callback function.

Indeed, HTMLField x y a abbreviates WithHTML x CGI () -> WithHTML y
CGI a, so that an XHTML field is a function that takes a sequence of (attribute)
nodes as an argument and returns a (singleton) sequence consisting the newly
constructed input field with the provided attribute nodes attached to it.

As the type of the submit function further indicates, an input handle may
either be VALID or INVALID. An input handle can only be VALID after its as-
sociated widget received input that parses according to the requirements of the
input handle. Hence, each constructor returns an INVALID handle because it has
not yet received its input.

For instance, InputField a x is one of the handle types:

data InputField a x = ...

instance InputHandle (InputField a) where ...

The constructor for a textual input field, inputField, uses this type of handle:

inputField :: (Reason a, Read a)

=> WithHTML x CGI ()

-> WithHTML y CGI (InputField a INVALID)

The type parameter a indicates the type of value that is acceptable to the in-
put field. The constraint Read a indicates that a parser for this type must be
available. The type a must also be an instance of class Reason, the members of
which supply an explanation of the input format.

Once a handle has become valid, its value is available through the value
function. The function value is also defined using a type class because it should
be applicable to different handle types.

class HasValue i where

value :: i a VALID -> a

instance HasValue InputField where ...

Suppose now that the values

ih :: InputField a INVALID

worker :: InputField a VALID -> CGI ()

are available. Then submit ih worker empty creates a submission button on
the screen. When the button is clicked, submit attempts to transform the (in-
valid) handle into a valid one by parsing the values entered for the field ih. If
this attempt is successful, submit passes the validated handle to the worker
function, which will perform the next processing step and generate the corre-
sponding document. If the handle cannot be validated, submit redisplays the
previous document with the erroneous input marked.

Up to now, the type parameter a of the input handle is not necessarily bound.
However, to read a value from the handle, the type must be fixed, for example,
by a type declaration.

318 P. Thiemann

worker :: InputField Int VALID -> CGI ()

worker intF =

let intValue = value intF in

...

The variable intValue has indeed type Int and it contains the input value.
One final problem remains to be solved. The submit function takes only one

input handle as a parameter. What if there are multiple handles to pass to the
worker function? It turns out that specially typed tuple constructors are required
for this purpose, F2, F3, and so on. They form tuples of input handles that can
be validated together. Of course, a value cannot be extracted directly from a
tuple of handles, so the worker function first has to take the tuples apart. The
example code in the next section contains a use of F2.

On some occasions, a program dynamically generates an arbitrary number
of handles in a single web page. In most of these cases, each submit function
still takes a finite number of handles. Here are some examples.

– A selection widget may present a statically unknown number of choices to
the browser, but it only generates a single handle for accessing the input.
See Sec.3.3 for an example.

– Forms for accessing mailing list managers, contact data bases, and the like
mostly just have a button to select a specific item from a displayed list.
Specific actions with non-trivial input can only be taken on subsequent pages.

However, the following scenario requires a dynamic number of handles. Consider
a form that provides a grade entry list for all students signed up for a particular
course. For each student the form contains a subform with input fields for the grade
and perhaps other information, too. There is only one type of handle involved
because the information is uniform across all students. Hence, WASH provides the
FL data constructor that turns a list of same-typed handles into a single handle.
Validating an FL handle boils down to validating each handle in the list. Of course,
the handle constructors FL, F2, F3, and so on may be nested arbitrarily.

The inconvenience of having specially typed constructors for tuples and lists
of handles as well as the distinction between valid and invalid handles is due to
the design decision that WASH should rely entirely on Haskell98. It is possible
to employ advanced typing features (multi-parameter type classes) of Haskell to
work around these inconveniences at the price of portability4. However, the incon-
venience is much reduced by using the preprocessorwhich can generate most of the
code for this wrapping and also for the extraction of the values from their handles.

2.6 Example: Adder

Figure 1 contains a complete example for a web page performing additions.
It relies on a function standardQuery, which is defined similarly to
standardTemplate but wraps a form around the entire body of the document.

4 The distribution contains a suitable alternative implementation of submit for demon-
strattion.

Server-Side Web Programming in WASH 319

1 adder :: CGI ()

2 adder =

3 standardQuery "Adder/1"

4 <#>

5 <p>First number to add <% sum1F <- inputField empty %></p>

6 <p>Second number to add <% sum2F <- inputField empty %></p>

7 <% submit (F2 sum1F sum2F) addThem <[value="Perform addition"]>%>

8 </#>

9
10 addThem (F2 sum1F sum2F) =

11 let sum1, sum2 :: Int

12 sum1 = value sum1F

13 sum2 = value sum2F

14 sum = sum1 + sum2

15 in

16 standardQuery "Adder/2"

17 <#>

18 <p><%= show sum1 %> + <%= show sum2 %> = <%= show sum %></p>

19 <% submit0 adder <[value="Continue"]> %>

20 </#>

Fig. 1. A web page for additions

The entire application consists of two different screens, Adder/1 (line 3-8)
and Adder/2 (line 15-19). The notation <#> and </#> just serves as a bracket
to combine a number of element nodes to a sequence. In our application, the
XHTML notation is preferable to using the raw document combinators. To see
this, consider lines 5 (or 6) and 7. In line 5, the notation sum1F <- ... binds
the variable sum1F to a handle to the first input field. By our convention, this
binding is valid up to the end of the current XHTML fragment, that is, up to
the closing </#>. Hence, the call to submit can refer directly to sum1F.

The call to submit takes as first argument a pair of handles constructed with
the special F2 operator for pairing handles. Pairs formed with this constructor
may be validated together and the callback function (line 10) can simply pattern-
match against F2 to extract the (now validated) handles again. Finally, the
function value extracts an Int value from each handle (lines 12,13) where the
result type Int is enforced with the type declaration for sum1 and sum2 in line 11.

The callback function is set up so that application logic and presentation are
kept strictly separate. It contains a submission button to restart the application.
This button is constructed using submit0, a specialized version of submit that
does not pass parameters to its callback action. The two submit buttons both
make use of the bracketing notation <[and]> for attribute creation to set the
value attribute of the underlying input element.

2.7 Fully Integrated XHTML Syntax

The WASH preprocessor packaged with version 2.2 enables further simplication.
Many escapes from the XHTML notation to Haskell only contain the definition

320 P. Thiemann

1 adder :: CGI ()

2 adder =

3 standardQuery "Adder/1"

4 <#>

5 <p>First number to add <input type="text" name="sum1"/></p>

6 <p>Second number to add <input type="text" name="sum2"/></p>

7 <input type="submit" WASH:call="addThem (sum1, sum2)"

8 value="Perform addition" />

9 </#>

10
11 addThem (val1, val2) =

12 let sum :: Int

13 sum = val1 + val2

14 in

15 standardQuery "Adder/2"

16 <#>

17 <p><%= show sum1 %> + <%= show sum2 %> = <%= show sum %></p>

18 <input type="submit" WASH:call="adder" value="Continue" />

19 </#>

Fig. 2. Web page for additions in XHTML notation

of a widget, e.g., they construct an input field or a submission button. These es-
capes can be avoided by having the preprocessor translate the standard XHTML
elements into the correct constructors. The name attribute of the input elements
serves directly as a binding instance of a Haskell identifier for the corresponding
handle. As an example, Fig. 2 contains two textual input elements that bind
the identifiers sum1 and sum2 as well as a submit button.

The submit button makes use of an attribute in a special XML name space
indicated by the prefix WASH. XML attributes in this name space provide extra
information that does not fits into the standard XHTML attributes. In this
case, the WASH:call attribute contains a call template for the callback function.
The attribute value "addThem (sum1, sum2)" indicates that clicking the button
invokes the callback function addThem on the values of the handles sum1 and
sum2. That is, the preprocessor eliminates the need for the F2, F3, . . . tuple
constructors and for the value function in many standard cases. Some cases,
like having a dynamic number of input handles still require special treatment.

The translation of the input element of type submit eliminates the named
tuple constructors in the user program as follows. Suppose that WASH:call="g
(p1, p2, ..., pn)".

– The parameter list is transformed to the nested named tuple

(F2 p1 (F2 p2 (... (F2 pn F0)...))).

This nested pair becomes the first parameter to the submit function.
– The callback function g is wrapped in a lambda abstraction

(λ (F2 p1 (F2 p2 (... (F2 pn F0)...)))
-> g (value p1, value p2, ..., value pn)),

Server-Side Web Programming in WASH 321

which becomes the second argument to submit. With this wrapper, the
callback g becomes completely unaware of handles and of named tuples. It
simply becomes a function that takes a tuple of input values and yields a
CGI action.

If no parameters are present, then the preprocessor emits a call to submit0 and
does not wrap the callback function in any way.

2.8 Customizing Widgets

WASH allows the creation of customized textual widgets in at least two different
ways. The first way is to create a new data type with a specialized parser for
that type. The other way is to combine and transform existing textual widgets.

New Data Type with Custom Parser. Any data type can serve as a data
type for input fields if it is an instance of Read and an instance of Reason. To
make a type T an instance of Reason it is sufficient to say

instance Reason T

If you want to be really nice, you override the default definition of the method
reason :: T -> String to provide an explanation of T ’s input syntax. reason
must not touch its T argument.

As an example, Figure 3 contains the implementation of a Password data
type, which enforces the rule that a Password is a string of length ≥ 8 with
characters taken from at least three of the four sets: lower case characters, upper
case characters, digits, and special characters.

newtype Password = Password { unPassword :: String }

instance Reason Password where

reason _ = "Password string of length >= 8 with characters ..."

instance Read Password where

readsPrec i str =

let lower = any isLower str

upper = any isUpper str

digit = any isDigit str

specl = any isSpecl str

isSpecl c = isPrint c && not (isAlphaNum c)

nclasses = sum (Prelude.map fromEnum [lower, upper, digit, specl])

in

if length str >= 8 && nclasses >= 3

then [(Password str, "")]

else []

Fig. 3. Definition of a password field type

322 P. Thiemann

adder :: CGI () adder =

standardQuery "Adder/1"

<#>

<p>Pair of numbers to add <% sumF <- inputField empty %></p>

<% pairF <- return (concatFieldsWith pairUp sumF []) %>

<% submit pairF addPair <[value="Perform addition"]> %>

</#>

where pairUp str = ’(’ : str ++ ")"

addPair pairF =

let sum1, sum2 :: Int

(sum1, sum2) = value pairF

in

standardQuery "Adder/2"

<#>

<p><%= show sum1 %> + <%= show sum2 %>=<%= show (sum1+sum2) %></p>

<% submit0 adder <[value="Continue"]> %>

</#>

Fig. 4. Addition with input field for pairs of integers

Transforming and Combining Widgets. As an example, where an input
transformation would be appropriate, consider the task of creating an input
field for pairs of integers or lists of integers. Of course, an input field for type
(Int, Int) or [Int] will do the job. However, people that are not initiated to
Haskell’s Read syntax might enter 15,42 instead of (15,42) for a pair of integers
or 1,2,3 instead of [1,2,3] for a list of integers. Hence, it would be nice to be
able to have a widget that automatically adds the extra parentheses around the
pair or the list unless they are already present.

The function concatFieldsWith builds a new input field out of existing ones.
It takes a function argument, a base input field, and a list of further input fields.
It applies the function to the strings entered in all fields and creates a new input
field with the resulting, transformed string as input.

As an example, let’s rewrite the addition web page created in the previous sub-
section to accept unparenthesized pairs of numbers as input. Figure 4 contains the
result. Of course, it would be possible to perform the same task with a specialized
field type but concatenating and transforming fields is much less effort.

Other uses of field transformations include error correction, format translation
(e.g., date and time formats), and more. It is also possible to combine two or more
input fields and parse them according to a common syntax. For example, a date
entry widget might use three fields for day, month, and year, whereas an existing
date parser and verifier might expect the entire date specification in one string.

3 An Example Application

The section considers the disciplined construction of a WASH application with
the example of a web logger. The contributions of the disciplined approach in-
troduced here are twofold.

Server-Side Web Programming in WASH 323

Name Password

register login newBlog

Keywords

selectBlog

Registration Login Blog Management

Startpage

logoff

Logoff

Blog Editor BlogViewerLoginFailure

Fig. 5. Sketch of blogger architecture

– A graphical notation for structuring a web application in terms of pagelets.
– Programming guidelines for strictly separating the program’s “business

logic” from the presentation logic.

Interestingly, no new facilities are required to enforce the separation of concern
between logic and presentation. Haskell’s functional abstraction suffices entirely
for this task. Haskell’s type system automatically enforces consistency between
the presentation skin and the logic even if their specifications are completely
separate.

3.1 The Web Logger

A blogging5 application supports the creation of categorized online diaries. The
difference between a blog and a real diary is that the diary is a private record
which is safely locked away in a drawer whereas the blog is publicly accessible,
everyone can read it (without knowing the authors), and everyone can attach
comments to entries in the blog if the blogging application supports this feature.
The design of such an application is large enough to offer interesting insights
and small enough to be presented concisely.

The diagram in Figure 5 describes the design of a very basic blogger. The
diagram is a hierarchical hypergraph with several different kinds of nested nodes
drawn as rectangles. Each solid rectangle in the diagram corresponds to one or
more web pages displayed on the browser. The dashed rectangles correspond
to pagelets, i.e., XHTML fragments with attached functionality. They can only

5 Contracted from web logging.

324 P. Thiemann

appear within web pages. The dotted rectangles correspond to widgets on the
screen. They can only appear within pagelets. Arrows can start from web pages
or pagelets and must end in web pages. Each arrow that starts from a pagelet
models an operation. The widgets in the pagelet provide the input to its opera-
tion. An arrow may fan out to multiple ends if the operation has multiple exits.
For instance, the login arrow splits into a successful end and a failure end.

Solid rectangles may be refined by subsidiary diagrams. Their outgoing ar-
rows must be reconnected to web pages or pagelets in the refined diagram. In-
coming arrows must be reconnected to subsidiary web pages.

Due to space and time constraints, we concentrate on the implementation of
a few pagelets and on the final wiring of the pagelets.

3.2 A Login Pagelet

Login functionality is widely used in web applications. The idea is usually that
more functionality is available to registered users, either as a reward for giving
away some personal information and/or to be able to track down users that have
violated the service provider’s contents policy.

The corresponding pagelet should consist of two input fields, one for entering
the user name and another for entering the password. The underlying function-
ality checks the name and password against some database. The pagelet should
allow for some parameterization so that it becomes reusable. In particular, the
definition of the functionality and the visual appearance should be separated
from each other.

Here is a tentative signature for the login function.

type Skin = ...

type Name = String

type Password = String

type PasswordChecker = Name -> Password -> IO Bool

type SuccessCont = Name -> CGI ()

type FailureCont = CGI ()

login :: Skin

-> PasswordChecker

-> SuccessCont

-> FailureCont

-> WithHTML x CGI ()

The first argument of type Skin describes the visual appearance of the pagelet.
The PasswordChecker is a side-effecting function that is supposed to perform
the password check. It is made into a parameter because its implementation is
likely to differ between systems. The remaining two arguments, SuccessCont
and FailureCont, are the actions taken if the password check succeeds or fails.

The skin argument is supposed to contain the entire visual formatting and
including the choice of input widgets. It should not contain application or pre-
sentation logic. In the present case, it is a function taking the callback for the
sole submit button in the pagelet.

Server-Side Web Programming in WASH 325

loginSkin act =

<table>

<tr><td>Name </td>

<td><input type="text" name="l" /></td>

</tr>

<tr><td>Password </td>

<td><input type="password" name="p" /></td>

</tr>

<tr><td></td>

<td><input type="submit" WASH:call="act(l, p)"

value="Login" /></td>

</tr>

</table>

Clearly, the only implementation decisions taken in this code fragment regard
the visual appearance of the login area: there is a textual input field, a pass-
word input field, and a submit button. The input fields are named l and p
and both are passed to the callback that has to be provided to the submit
function.

The logic of the login pagelet is completely separate in the function login.

login skin pwCheck scont fcont =

skin $ \ (l, p) ->

let logname = unNonEmpty l

pw = unPassword p

in

do registered <- io (pwCheck logname pw)

if registered

then scont logname

else fcont

The application of the skin function to the callback function constructs the
XHTML elements corresponding to the login pagelet. The callback function
implements the logic: it retrieves the values from the input fields at their ex-
pected types, performs the password check, and invokes one of the continua-
tion actions.

There is one unfortunate property of the chosen decomposition in XHTML
skin and functionality. The skin already has to provide for the wiring between
the input widgets and the submission buttons. In the extreme case, the skin
writer (who might be using a tool with a graphical front end) does not know
about the required wiring and may not be familiar with Haskell typing at all.
In such a case, the skin “code” has to assume the worst: all input handles are
passed to all submission buttons. In the worst case, the submit function itself
can be made into a parameter and an appropriate projection function can be
applied to the handle parameter before it is passed to submit.

The loginSkin and login functions are independent of each other and
can be defined in different modules. The definition of the application’s skin
can thus be concentrated into a single separate module just by collecting all
skin definitions.

326 P. Thiemann

3.3 A Selection Pagelet

Another commonly recurring functionality is to either select from a list of existing
alternatives or to create a new alternative. This functionality may be subsumed
by the following type.

type Skin = ...

type GetAlternatives = CGI [String]

type NewCont = String -> CGI ()

type OldCont = String -> CGI ()

selector :: Skin -> GetAlternatives -> NewCont -> OldCont

-> WithHTML x CGI ()

Again, the pagelet may be split into the skin and the logic. The skin is
only concerned with the visual appearance. However, it has more parameters
than before because it contains a complicated widget, selectSingle, which
creates a selection box essentially from a list of alternatives. As mentioned before,
selectSingle yields exactly one input handle regardless of the number of items
it selects from.

selectorSkin shower def selections act =

<table>

<tr><td>Enter new topic </td>

<td><input type="text" name="nt" /></td></tr>

<tr><td>Select existing topic </td>

<td><% et <- selectSingle shower def selections empty %></td></tr>

<tr><td></td>

<td><input type="submit" WASH:call="act(nt, et)"

value="proceed" /></td></tr>

</table>

The logic part has only one novelty. The program needs to lift the CGI
computation getAlternatives to the WithHTML x CGI monad because the skin
is defined in it. Otherwise the code is straightforward.

selector skin getAlternatives newCont oldCont =

do alts <- lift getAlternatives

let selections = Nothing : map Just alts

skin (fromMaybe "<new entry>")

(Just Nothing)

selections

$ \ (nt, et) ->

case et of

Just name ->

oldCont name

Nothing ->

newCont (unText nt)

The use of unText forces the input field to accept (and return to the program)
an arbitrary string of characters.

Server-Side Web Programming in WASH 327

3.4 Final Wiring Up

Each pagelet is defined in a separate function and potentially in a separate
module. Another module, Skins, contains the definitions of all skins. The main
program in the module Blogger applies each pagelet to its skin and wires the
resulting pagelets according the design.

-- build pagelets from logic and skin

startPage= StartPage.startPage Skins.startSkin

login = Login.login Skins.loginSkin

logoff = Logoff.logoff Skins.logoffSkin

register = Register.register Skins.registerSkin

selector = Select.selector Skins.selectorSkin

-- application code

blogger :: CGI ()

blogger =

mainPage initialBloggerState ""

mainPage :: BloggerState -> String -> CGI ()

mainPage bs message =

ask $ startPage message (userManager bs) (blogManager bs)

userManager :: BloggerState -> WithHTML x CGI ()

userManager bs =

case loggedName bs of

Nothing ->

Skins.userManager1

(login myPasswordCheck

(\ user -> mainPage bs{ loggedName = Just user }

"Login successful")

(mainPage bs{ loggedName = Nothing }

"Login failed"))

(register myPasswordSaver

(\ user -> mainPage bs{ loggedName = Just user }

"Registration successful"))

Just user ->

Skins.userManager2

(logoff user (mainPage initialBloggerState

(user ++ " logged off")))

blogManager :: BloggerState -> WithHTML x CGI ()

blogManager bs@B{ status = Visiting } =

selector myBlogTitles (BlogAccess.newBlog bs mainPage)

(BlogAccess.oldBlog bs mainPage)

The function mainPage generates a web page by passing to startPage a string
and two sequences of document nodes, which are generated by the pagelets
userManager and blogManager. All involve the blog state bs of type
BloggerState as a central data structure. In our simple setting, the state con-
tains the login name of the current user and some status information.

328 P. Thiemann

type UserName = String

type BlogName = String

data BloggerState =

B { loggedName :: Maybe UserName, status :: BlogAction}

deriving (Read, Show)

data BlogAction =

Visiting | Editing BlogName | Reading BlogName

deriving (Read, Show)

The code for the blogManager function is incomplete in the listing. It only deals
with the case where a user without a login wants to access some blogs. The
implementation of this access, is in the BlogAccess module which provides one
(or more) web pages that either create a new blog or access an existing blog.

The main emphasis of the code is on clearly separating different concerns.
The one part that deals exclusively with the graphical appearance is isolated in
the Skins module. The module Blogger concentrates on the application logic
whereas application specific functions, like myBlogTitles, myPasswordSaver,
and myPasswordCheck, are kept completely separate. Our example implemen-
tation of these functions is in terms of the file system, but it is easy to replace
them by database accesses through a suitable API.

4 A Taste of Implementation

This short section explains the main ideas underlying the implementation of
WASH. It is provided because the implementation has a subtle impact on the
way that WASH deals with server-side state and on the efficiency of a Web
application programmed with WASH. While the efficiency consideration can be
safely dismissed for small applications, the handling of server-side state is crucial
for the semantics.

The main problem in WASH’s implementation is the representation of a
session, that is, a programmed sequence of forms that is driven by the user’s
interactive inputs. The concept of a session is fundamentally at odds with the
stateless nature of HTTP as already explained in the introduction. The most
portable way of running a program through HTTP is the Common Gateway
Interface (CGI) [2]. Such a program is a CGI program. An HTTP request for a
CGI program starts the selected program on the server and passes the param-
eters from the request to the program. The program acts on the parameters,
produces some output—usually another form—that is returned to the browser,
and terminates.

To continue the session, the terminated CGI program somehow has to re-
member the state of the interaction thus far. One common approach is to store
this state on the server and include an pointer to the state into the returned form,
so that the next CGI program can continue from that state. Unfortunately, this
approach is neither scalable nor compatible with the browser’s navigation fea-
tures (the back-button, in particular; see [9] for more discussion). Hence, the
implementation of WASH has made another choice.

Server-Side Web Programming in WASH 329

When a WASH program executes, each input to the program is logged in a
session log. The session log has entries for the results of IO actions and for inputs
from form submissions. When the program reaches an ask operation, it creates
a form as specified by the argument of ask, prints it, and terminates. Instead of
putting a pointer to a saved state in the form, WASH instead puts the session
log into the form.

Submitting a form containing a session log invokes the same program on
the server. However, since there is now a session log, the input operations do
not actually consume input but read the old values from the log. That is, when
reaching the above ask operation again, the program is in exactly the same state
as in the previous invocation because it replayed the same inputs. In addition,
the input for the form generated by this ask is now available, too. Hence, in
this round and in all later rounds, ask does not produce a web page but rather
decodes the input, appends it to the session log, and passes control to one of the
callbacks specified for the form. Then execution continues up to the next ask
and the next cycle can start.

The working of the io operation is even simpler. If the session log already
contains the operation’s result from a previous run, then it just returns the result
from the log. Otherwise, it performs the IO operation and appends its result to
the log. The type of every value that is returned from io is constrained by Read
and Show as indicated in Sec.2.1 because such values must be written to the log
and potentially read back in.

This implementation of sessions is scalable because it does not require any
state on the server. If a server becomes unavailable, then either the session can
continue when the server becomes available again or the session can continue
on a different server running the same program. Also browser navigation cannot
introduce a mismatch between the state of the client and the server state, simply
because there is no server state.

One problem with implementing sessions via session logs may be that session
logs get too long and the replay time dominates the execution time. However,
there are ways of structuring the application (and supporting WASH operators
once and forever) so that the session log remains bounded in size [9].

Of course, some applications require server-side state beyond the session log.
In many cases, the standard IO interface can handle these efficiently. In addi-
tion, there is an abstraction AbstractTable specially tailored for dealing with
database accesses [11].

5 Conclusion

WASH is a web programming system organized around the ideas of type-safe in-
terfaces, abstract datatypes, and compositionality. This combination enables the
modular construction of web applications from pagelets, which are components
integrating functionality and appearance. At the same time, the specifications
of functionality and appearance may be kept separate, as demonstrated in the
paper’s example application. A simple graphical notation for designing web ap-

330 P. Thiemann

plications is put forward. This notation directly reflects the interaction structure
as well as the program structure.

While WASH supports the separation of presentation and logic easily, it is
debatable if a graphic designer has sufficient expertise to perform the rudimen-
tary programming necessary for the presentation part. A more convincing case
could be made if the creation of the presentation part was purely a matter of
XHTML editing. Work towards this goal is in progress.

Acknowledgment

The author is grateful to the second readers for their helpful comments on a
draft of this paper, which led to a number of improvements.

References

1. Apache cocoon project. http://cocoon.apache.org/, June 2004.
2. CGI: Common gateway interface. http://www.w3.org/CGI/, 1999.
3. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext transfer protocol. http://www.faqs.org/rfcs/rfc2616.html,
June 1999.

4. Paul Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Automatically restructuring programs for the Web. In Proceedings of
ASE-2001: The 16th IEEE International Conference on Automated Software En-
gineering, pages 211–222, San Diego, USA, November 2001. IEEE CS Press.

5. Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and Matthias
Felleisen. Modeling Web interactions. In Proc. 12th European Symposium on
Programming, Lecture Notes in Computer Science, Warsaw, Poland, April 2003.
Springer-Verlag.

6. Paul T. Graunke and Shriram Krishnamurthi. Advanced control flows for flexible
graphical user interfaces: or, growing GUIs on trees or, bookmarking GUIs. In
Proceedings of the 24th International Conference on Software Engineering (ICSE-
02), pages 277–290, New York, May 19–25 2002. ACM Press.

7. Haskell 98, a non-strict, purely functional language.
http://www.haskell.org/definition, December 1998.

8. Philippe Le Hégaret, Ray Whitmer, and Lauren Wood. W3c document object
model. http://www.w3.org/DOM/, August 2003.

9. Peter Thiemann. An embedded domain-specific language for type-safe server-side
Web-scripting. ACM Transactions on Internet Technology, 5(1):1–46, 2005.

10. Philip Wadler. Monads for functional programming. In Advanced Functional
Programming, volume 925 of Lecture Notes in Computer Science, pages 24–52.
Springer-Verlag, May 1995.

11. Web authoring system in Haskell (WASH). http://www.informatik.uni-

freiburg.de/ thiemann/haskell/WASH, March 2001.
12. XForms - the next generation of Web forms. http://www.w3.org/MarkUp/Forms/,

May 2003.

Refactoring Functional Programs

Simon Thompson

Computing Laboratory, University of Kent,
Canterbury, Kent CT2 7NF, United Kingdom

S.J.Thompson@kent.ac.uk

Abstract. Refactoring is the process of improving the design of exist-
ing programs without changing their functionality. These notes cover
refactoring in functional languages, using Haskell as the medium, and
introducing the HaRe tool for refactoring in Haskell.

1 Introduction

Refactoring [8] is about improving the design of existing computer programs and
systems; as such it is familiar to every programmer, software engineer and de-
signer. Its key characteristic is the focus on structural change, strictly separated
from changes in functionality. A structural change can make a program simpler,
by removing duplicate code, say, or can be the preparatory step for an upgrade
or extension of a system.

Program restructuring has a long history. As early as 1978 Robert Floyd in
his Turing Award lecture [7] encouraged programmers to reflect on and revise
their programs as an integral part of their practice. Griswold’s thesis on auto-
mated assistance for LISP program restructuring [9] introduced some of the ideas
developed here and Opdyke’s thesis [22] examined refactoring in the context of
object-oriented frameworks. Martin Fowler brought the field to prominence with
his book on refactoring object-oriented programs [8]. The refactoring browser, or
‘refactory’ [3], for Smalltalk is notable among the first generation of OO tools;
a number of Java tools are now widely available. The best known of these is
the refactoring tool for Java in Eclipse [5]. More comprehensive reviews of the
refactoring literature are available at the web page for [8] and at our web site.1

Refactorings are one sort of program transformation; they differ from other
kinds of program transformation in a number of ways. Traditional transforma-
tions usually have a ‘direction’: they are applied to make a program more time or
space efficient, say. On the other hand, refactorings are typically bi-directional: a
refactoring to widen the scope of a local definition could equally well be applied
in reverse to localise a global definition.

It is also characteristic of refactorings that they are ‘diffuse’ and ‘bureau-
cratic’: that is, their effect is not limited to a particular point in a program, and
they require care and precision in their execution. Consider the example of the
simplest possible refactoring: renaming a component of a program. To effect this
1 http://www.cs.kent.ac.uk/projects/refactor-fp/

331–357, 2005.V. Vene and T. Uustalu (Eds.): AFP 2004, LNCS 3622, pp.
c© Springer-Verlag Berlin Heidelberg 2005

332 S. Thompson

change requires not only the component definition to be changed, but also every
use of the component must be similarly modified. This involves changing every
file or module which might use the component, potentially tens or hundreds of
modules. Moreover, it is vital not to change any components hidden in other
parts of the system which happen to share the same name.

It is, of course, possible to do refactorings ‘by hand’, but this process is
tedious and, more importantly, error-prone. Automated support for refactorings
makes them safe and easy to perform, equally easy to undo, and also secure in
their implementation. The Refactoring Functional Programs2 [17] project at the
University of Kent is building the HaRe [12] system to support refactorings for
Haskell programs.

HaRe is designed as a serious tool for use by practising programmers: HaRe
supports the whole of Haskell 98; it is integrated into standard development
environments and it preserves the ‘look and feel’ of refactored programs. HaRe
is built using a number of existing libraries: Programatica [11] on which to
build the language-analysis components, and Strafunski [19] which gives general
support for tree transformations.

These notes begin presenting overviews of design for functional programs
and the HaRe system. The core of the paper is an exposition of the basics of
refactoring: a detailed description of generalisation is presented as an example of
a structural refactoring in Section 4, and the impact of modules on refactoring
is examined in Section 5.

A number of data-oriented refactorings are given Section 6: principal among
these is the transformation taking a concrete data type into an ADT, which is
implemented in HaRe as composition of simpler refactorings. As well as provid-
ing a repertoire of built-in refactorings, HaRe provides an API by which other
refactorings can be constructed; this is the subject of Section 7. The notes con-
clude with a discussion of conclusions and directions for the research.

I am very grateful indeed to my colleagues Huiqing Li and Claus Reinke,
interns Nguyen Viet Chau and Jon Cowie, and research students Cyris Ryder
and Chris Brown for their collaboration in the project. I would also like to thank
the referees for their suggestions and corrections.

2 The Elements of Design

In designing an object-oriented system, it is taken for granted that design will
precede programming. Designs will be written using a system like UML [27]
which is supported in tools such as Eclipse [5]. Beginning programmers may well
learn a visual design approach using systems like BlueJ [2]. Work on a similar
methodology for functional programming is reported in [23], but little other work
exists. There may be a number of reasons for this.

– Existing functional programs are of a scale which does not require design.
Many functional programs are small, but others, such as the Glasgow Haskell
Compiler, are substantial.

2 This work is supported by EPSRC under project grant GR/R75052.

Refactoring Functional Programs 333

– Functional programs directly model the application domain, thus rendering
design irrelevant. Whilst functional languages provide a variety of power-
ful abstractions, it is difficult to argue that these provide all and only the
abstractions needed to model the real world.

– Functional programs are built as an evolving series of prototypes.

If we accept the final reason, which appears to be the closest to existing practice,
we are forced to ask how design emerges. A general principle is the move from
the concrete to the abstract, and from the specific to the general. Specifically,
for Haskell, we can use the following strategies:

Generalisation. A function is written with a specific purpose: it is generalised
by making some of the particular behaviour into an argument.

Higher-Order Functions. This particular case of generalisation is character-
istic of modern functional programming: specific behaviour is abstracted into a
function, which becomes a parameter.

Commonality. Two parts of a program are identified as being identical or at
least similar; they can be replaced by invocations of a single function (with
appropriate parameters).

Data Abstraction. Concrete, algebraic data types provide an excellent start-
ing point, but are difficult to modify: a move to an abstract type gives the pro-
grammer flexibility to modify the implementation without modifying any client
code.

Overloading. The introduction of a class and its instances allows set of
names to be overloaded: programs thus become usable in a variety of contexts.
This can make programs more readable, and also replace a number of similar
definitions by a single, overloaded, one.

Monadification. This particular case of overloading allows explicit computa-
tional effects to become an implicit part of a system; once this transformation
has taken place it is possible to modify the monad being used without changing
the client code. A number of monads can be combined using monad transform-
ers [14].

The HaRe tool supports many of these ‘design abstractions’. Using a refactoring
tool allows programmers to take a much more exploratory and speculative ap-
proach to design: large-scale refactorings can be accomplished in a single step,
and equally importantly can be undone with the same effort. In this way Haskell
programming and pedagogy can become very different from current practice.

3 The HaRe System

Refactoring for Haskell is supported by the HaRe tool [12] built at the University
of Kent as a part of the project Refactoring Functional Programs. The system
was designed to be a tool useable by the working programmer, rather than a

334 S. Thompson

proof-of-concept prototype. This imposes three substantial constraints on the
designer.

– It should support a full standard language – Haskell 98 in this case – rather
than a convenient subset chosen for demonstration purposes.

– It should work within programmers’ existing tools (Emacs and Vim) rather
than be stand alone, allowing programmers to augment their existing prac-
tice with zero overhead.

– It is our experience that although layout is of syntactic significance in
Haskell, different programmers adopt widely different styles of layout, and in
most cases programmers would find it completely unacceptable to have had
their code reformatted by a ‘pretty printer’ in the course of a refactoring.
The system should therefore preserve the appearance of source code pro-
grams. In particular, it is crucial to preserve not only comments but also the
particular layout style used by the programmer.

3.1 Using HaRe

HaRe supports a growing set of refactorings over Haskell; the details of many of
these are presented in the sections that follow. The initial release of HaRe con-
tained a number of ‘structural’, scope-related, single-module refactorings (Oc-
tober 2003); multiple-module versions of these refactorings were added in HaRe
0.2 (January 2004), and the first datatype-related refactorings added in HaRe
0.3 (November 2004). The third version restructures HaRe to expose an API for

Fig. 1. HaRe: the Refactor menu

Refactoring Functional Programs 335

Fig. 2. HaRe: the result of ‘From concrete to abstract data type’

the system infrastructure used for implementing refactorings and other transfor-
mations in HaRe; this is addressed in more detail in Section 7.

HaRe, embedded in Emacs, is shown in Figures 1 and 2. A new Refactor
menu has been added to the user interface: menu items group refactorings, and
submenus identify the particular refactoring to be applied. Input is supplied by
the cursor position, which can be used to indicate an identifier to be renamed,
say, and from the keyboard, to give the replacement identifier, for instance.
Figure 1 shows a program defining and using a concrete data type; Figure 2
shows the result of refactoring this to an abstract data type.

3.2 Implementation

HaRe is implemented in Haskell. It can be used as a stand-alone program, and is
integrated with Emacs and Vim using their scripting languages. As is apparent
from the example shown in Figures 1 and 2, HaRe is more than a text editor.
Implementing refactorings requires information about a number of aspects of the
program:

336 S. Thompson

Information
gathering

Precondition
checking

Program
transformation

Program
rendering

Fig. 3. The four stages of a refactoring

Syntax. The subject of the refactoring (or program transformation) is the ab-
stract syntax tree (AST) for the parsed program. To preserve comments and
layout, information about comments and source code locations for all tokens is
also necessary.

Static Semantics. In the case of renaming a function f it is necessary to check
that this binding of f does not capture any existing uses of f. The binding
analysis provides this information.

Module Analysis. In a multi-module project, analysis must include all mod-
ules. For example, renaming the function f must percolate through all modules
of a project which import this binding of f.

Type System. If a function g is generalised (as in Section 4) then its type
declaration will need to be adjusted accordingly.

It is therefore clear that we require the full functionality of a Haskell front-end
in order to implement the refactorings completely and safely. In this project we
have used the Programatica front end [11], which supports all aspects of analysis
of Haskell 98. The correct implementation of a refactoring consists of four parts,
shown in Figure 3.

Information Gathering and Condition Checking. The refactoring will
only be performed if it preserves the semantics of the program; examples of
some of the conditions are given above. Verifying these conditions requires in-
formation, such as the set of identifiers in scope at a particular point in the
program, to be gathered from the AST by traversing it.

Transformation. Once the conditions are verified, it is possible to perform the
refactoring, which is a transformation of the AST.

Program Rendering. Once transformed, source code for the new program
needs to be generated, conforming to the original program layout as much as
possible.

Information gathering and transformation consist for the most part of ’boiler-
plate’ code: generic operations are performed at the majority of AST nodes, with
the real work being performed by ad hoc operations at particular kinds of node.
These hybrid generic / specific traversals are supported by a number of systems:
in HaRe we use Strafunski [19]; other systems include [15,16].

Refactoring Functional Programs 337

More details of the HaRe system, including the implementation of a particular
refactoring and the details of program rendering, are given in Section 7 and the
papers [17,18].

4 Structual Refactorings

The first release of HaRe contained a number of refactorings which could be
called structural. They principally concern the structure of a program, and in
particular the objects defined, how they are named and what are their scopes.
In summary, HaRe supports the following structural refactorings.

Delete a definition that is not used.

Duplicate a definition, under another name.

Rename a function, variable, type or any other program item.

Promote a definition from a local scope to a wider scope, or to the top level of
the module.

Demote a definition which is only used within one definition to be local to that
definition.

Introduce a definition to name an identified expression.

Add an argument to a function.

Remove an argument from a function, if it is not used.

Unfold a definition: in other words replace an occurrence of the left-hand side
of a definition by the corresponding right-hand side.

Generalise a definition by making a selected sub-expression of its right-hand
side into a value passed into the function via a new formal parameter.

A number of these refactorings are inverses of each other: promote / demote a
definition; add / remove an argument. Others are not quite inverse; the principal
example of this is the pair: unfold a definition / introduce a definition. Yet others
have inverses yet to be implemented, including generalisation.

We look in more detail here at just one refactoring: generalisation, whose full
catalogue entry is given in Figures 4 and 5. Note that, in common with many of
these refactorings, generalisation has an effect throughout a module and indeed
beyond, since both the definition of the function and all calls to the function
must be modified.

Each refactoring is only valid under certain conditions. These conditions are
covered in more detail in the paper [17] and in the catalogue which accompanies
the HaRe system [12].

The most complex conditions are centered on the binding structure of the
program: that is, the association between uses of identifiers (function and vari-
able names, types, constructor names and so forth) and their definitions. Two
examples serve to illustrate the point:

338 S. Thompson

Generalisation

Description: Generalise a definition by selecting a sub-expression of the right-hand
side (here "\n") of the definition and making this the value of a new formal param-
eter added to the definition of the function. The sub-expression becomes the actual
parameter at all the call sites.

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs)

= (x ++ "\n") : format xs

table = concat . format

format :: [a] -> [[a]] -> [[a]]

format sep [] = []

format sep [x] = [x]

format sep (x:xs)

= (x ++ sep) : format sep xs

table = concat . format "\n"

General comment: The choice of the position where the argument is added is not
accidental: putting the argument at the beginning of the argument list means that it
can be added correctly to any partial applications of the function. Note that in the Add
Argument refactoring we name the new parameter at the same level as the definition,
whereas here we substitute the expression at all call sites.

Left to right comment: In the ex-
ample shown, a single expression is se-
lected. It is possible to abstract over a
number of occurrences of the (syntacti-
cally) identical expression by preceding
this refactoring by

– a transformation to a single equa-
tion defined by a case expression;

– the introduction of a local defini-
tion of a name for the common ex-
pression.

and by following the refactoring by the
appropriate inverse refactorings.

In a multi-module system, some of
the free variables in the selected sub-
expression might not be accessible to
the call sites in some client modules. In-
stead of explicitly exporting and/or im-
porting these variables, the refactorer
creates an auxiliary function (fGen,
say) in the module containing the defi-
nition to represent the sub-expression,
and makes it accessible to the client
modules.

Right to left comment: The inverse
can be seen as a sequence of simpler
refactorings.

– A definition of a special case is in-
troduced: fmt = format "\n" and
any uses of format "\n" (outside
its definition) are folded to fmt.

– Using generative folding, the def-
inition of format is specialised to
a definition of fmt. (Folds in the
style of Burstall and Darlington
are called generative as they will
generate a new definition.)

– If all uses of format take the
parameter "\n" then no uses of
format remain. Its definition can
be removed, and fmt can be re-
named to format.

(cont.)

Fig. 4. Catalogue entry for generalisation (part 1)

Refactoring Functional Programs 339

Left to right conditions: There are
two conditions on the refactoring.

– Adding the new formal parame-
ter should not capture any existing
uses of variables.

– The abstracted sub-expression, e

say, becomes the first argument of
the new function at every use of it.
For every new occurrence of e it is
a requirement that the bindings of
all free identifiers within e are re-
solved in the same way that they
are in the original occurence.

Right to left conditions: The suc-
cessful specialisation depends upon the
definition of the function to have a par-
ticular form: the particular argument
to be removed has to be a constant pa-
rameter: that is, it should appear un-
changed in every recursive call.
The definition of the original function
can only be removed if it is only used
in the specialised form.

Analysis required: Static analysis of bindings; call graph; module analysis. If the
type declaration is to be modified, then type inference will be needed.

Fig. 5. Catalogue entry for generalisation (part 2)

– If a definition is moved from a local scope to the top level, it may be that
some names move out of their scope: this could leave them undefined, or
bound to a different definition.

– In the case of generalisation, a new formal parameter is added to the def-
inition in question: this may also disturb the binding structure, capturing
references to an object of the same name defined at the top level.

Capture can occur in two ways: the new identifier may be captured, as when f
is renamed to g:

h x = ... h ... f ... g ... h x = ... h ... g ... g ...
where where
g y = ... g y = ...

f x = ... g x = ...

or it may capture other uses, as when a local definition f is renamed to g:

h x = ... h ... f ... g ... h x = ... h ... g ... g ...
where where
f y = ... f ... g ... g y = ... g ... g ...

g x = ... g x = ...

In the next section we explore the impact of modules on the refactoring process
for Haskell.

5 Modules and Module-Aware Refactorings

The second release of HaRe extends the first in two ways. The structural refac-
torings are themselves made module aware, that is they are extended to have an

340 S. Thompson

effect throughout a multi-module project rather than in a single module alone.
Various refactorings for the module system are then introduced.

5.1 Module-Aware Refactorings

A Haskell module may import definitions from other modules, and re-export
them and its own definitions for use in other modules. This has the effect of
widening the scope of a definition from a single module to a set of modules. It
may be imported just under its name, or in ‘qualified’ form as Module.name.
An exhaustive, formal, description of the Haskell module system, developed as
a part of the Programatica project, is given in [4].

Returning to our example of generalisation, it is necessary to consider the
expression which becomes the new actual parameter at every call site of the
function, in every module where the function is used. This expression will use
identifiers defined in its home module, and these will need to be accessible.
Two options present themselves. First, it would be possible to export all these
definitions to all modules using the function, but this has the disadvantage of
cluttering up the namespace with extraneous definitions, as well as introducing
the possibility of name clashes. Instead, we introduce a new name for the ac-
tual parameter in the home module, and export that value together with the
generalised function.

The scope of multi-module refactorings is not, of course, universal. In the
HaRe project, we build on the Programatica infrastructure, and so we use the
Programatica notion of project as delimiting the scope of a refactoring. In many
cases it is possible to mitigate the effect of refactorings on modules outside the
project. For example, if a generalised function is going to be used outside the
project, then it is possible to build a ‘wrapper’ module which exports the original
function rather than the generalised version.

5.2 Module Refactorings

HaRe supports a number of refactorings related to the module system.

Clean the import list, so that the only functions imported are ones that are
used in the module.
Make an explicit list of those bindings used from each imported module.
Add and remove items from the export list.
Move a definition from one module to another.

Consider the process of moving a top level definition of f from module A to B.
First, various conditions need to be satisfied if the move is to happen.

– f should not already be defined at the top level of B.
– The free variables in f should be accessible within the module B.
– The move should not create a circularity in the module dependencies.3

3 Whilst Haskell 98 allows recursive modules, the reason for this restriction is the im-
perfect support for recursive modules provided by current Haskell implementations.

Refactoring Functional Programs 341

If the conditions are satisfied then the refactoring can be achieved by moving
the definition from A to B with some follow-up actions.

– Modify the import/export lists in the modules A and B and the client modules
of A and B as necessary.

– Change uses of A.f to B.f or f in all affected modules.
– Resolve any ambiguity that might arise.

Other refactorings within the module system include: moving a group of defi-
nitions, moving type, class and instance definitions, and merging and splitting
modules.

6 Data-Oriented Refactorings

This section looks in more detail at a number of larger-scale, data-oriented,
refactorings. It is characteristic of all of these that they are bi-directional, with
the context determining the appropriate direction. Some of these refactorings
are described in the case study of [26]. The section concludes with an overview
of other, type-based, refactorings.

6.1 Concrete to Abstract Types

One of the principal attractions of almost all modern functional programming
languages is the presence of pattern matching.4 Pattern matching combines
selection between alternatives and extraction of fields, allowing definitions of
data-processing functions to follow the template provided by the data definition
closely. Take the example of a binary tree:

data Tree a
= Leaf a |
Node a (Tree a) (Tree a)

The definition has two cases: a Leaf and a (recursive) Node. Correspondingly, a
function to flatten a tree into a list has two clauses: the first deals with a leaf,
and the second processes a node, recursively:

flatten :: Tree a -> [a]

flatten (Leaf x) = [x]
flatten (Node x s t)
= x : flatten s ++ flatten t

The disadvantage of this approach is the concrete nature of the definition of Tree:
in other words, the interface to the Tree type is given by a pair of constructors:
4 Scheme is the main exception, and indeed even within the Scheme community it is

taken for granted that pattern matching macros are used by scheme programmers
in all but the most introductory of contexts.

342 S. Thompson

module Tree (Tree, leaf, node, isLeaf, isNode, val, left, right) where

data Tree a

= Leaf a |

Node a (Tree a) (Tree a)

isLeaf (Leaf _) = True val (Leaf x) = x

isLeaf _ = False val (Node x _ _) = x

isNode (Node _ _ _) = True left (Node _ l _) = l

isNode _ = False right (Node _ _ r) = r

leaf = Leaf

node = Node

Fig. 6. Tree as an abstract data type

Leaf :: a -> Tree a
Node :: a -> Tree a -> Tree a -> Tree a

Leaf and Node are not only functions, but also can be used in patterns for the
Tree type. Every Tree is built by applying these constructors, and any function
over Tree can use pattern matching over its arguements.

The alternative is to make Tree an abstract type. The interface to an abstract
type is a collection of functions. Discrimination between the various cases and
selection of components needs now to be provided explicitly by functions. The
code for this case is shown in Figure 6. The selector functions can also be defined
using field names.

data Tree a
= Leaf { val :: a } |
Node { val :: a, left, right :: Tree a }

Each function defined using pattern matching needs to be redefined. Case dis-
crimination is replaced by guards, and selction by explicit selectors (given in this
case by labelled field):

flatten :: Tree a -> [a]
flatten t
| isleaf t = [val t]
| isNode t
= val t : flatten (left t) ++ flatten (right t)

A refactoring of this sort is often preliminary to a change of representation of the
Tree type; after the refactoring this can be achieved by changing the definition
of the interface functions; no client functions need to be modified.

HaRe supports this refactoring by means of a number of elementary refac-
torings:

Refactoring Functional Programs 343

Add Field Names. Names are added to the fields of the data type. Names are
chosen by the system, but these can be changed using the renaming refactoring.
Add Discrimiators. By default, discriminators are named ‘isCon’ for the con-
structor Con. If functions of this name already exist, other names are chosen.
Add Constructors. Functions con corresponding to the constructor Con are
introduced.
Remove Nested Patterns. A particular problem is pressented by patterns
containing constructors from other datatypes. Using the Tree example again,
consider the fragment

f (Leaf [x]) = x+17

in which a list constructor occurs within a pattern from the Tree datatype. We
will have to replace this pattern with a variable, and thus we lose the list pattern
match too. So, we need to deal with this nested pattern first, thus:5

f (Leaf xs) = case xs of
[x] -> x+17

We leave it to readers to convince themsleves that other forms of nesting do not
require this treatment.
Remove Patterns. Patterns in the Tree type can now be eliminated in terms
of the discriminators and selectors. Picking up the previous example, we will
have

f t
| isLeaf t = case (val t) of

[x] -> x+17

Create ADT Interface. Move the type definition into a separate file with an
interface containing the selectors, discriminators and constructor functions.

Views [28,1] give a mechanism for pattern matching to cohabit with type ab-
straction. It would be possible to augment the refactoring to include the appro-
priate view, and to retain pattern matching definitions whilst introducing type
abstraction, if the revised proposal [1] were to be incorporated into Haskell.

6.2 Inside or Out?

The abstraction of Tree in Section 6.1 gives a minimal interface to the type:
values can be constructed and manipulated, but no other functions are included
in the ‘capsule’ or module which delimits the type representation.

Arguably, more functions, such as flatten in our running example. might
be included in the capsule. What are the arguments for and against this?

5 It may also be necessary to amalgamate a number of clauses before performing this
step, since it is not possible to ‘fall through’ a case statement.

344 S. Thompson

data Tree a

= Leaf { val::a, flatten:: [a] } |

Node { val::a, left,right::(Tree a), flatten::[a] }

leaf x = Leaf x [x]

node x l r = Node x l r (x : (flatten l ++ flatten r))

Fig. 7. Memoising flatten in the data representation

Inside. A function included in the capsule has access to the representation,
and so can be defined using pattern matching. This may be unavoidable or
more efficient if the interface does not export sufficient functionality.
Outside. A function defined outside the capsule need not be re-defined when
the implementation changes, whereas a function inside must be redefined.

This refactoring extends ‘move definition between modules’ since the definition
itself may also be transformed on moving in or out of the capsule.

6.3 Change of Representation: Memoisation

One reason for a change of representation is to support a more efficient repre-
sentation of a data type. Suppose that Trees are repeatedly flattened. There is
then a case for including a field in the representation to contain this memoised
value.

Once data of this sort is included in a type, it is imperative for the consistency
of the data representation that the type is abstract, so that values are only
constucted and manipulated by functions which preserve the invariant property
that the particular field indeed represents the memoised value.

This transformation can be supported in a refactoring. The transformed ver-
sion of the running example is shown in Figure 7. The example shows that the
value is memoised in the fields named flatten. The leaf constructor establises
the invariant, and node will preserve it.

Incidentally, the memoisation is lazy: the memoised function is as strict or
lazy as the original function, so that it is possible, for example. to extract any
finite portion of the flatten field of bigTree = node 1 bigTree bigTree.

6.4 Constructor or Constructor Function?

Figure 8 shows two variants of a type of regular expressions. The left-hand
definition makes plus syntactic sugar: it will be expanded out before any function
over Expr can be applied, and definitions for regular expressions need not treat
the plus case separately, so

literals (Plus e)
= literals (Then e (Star e))
= literals e ‘union‘ literals e
= ...

Refactoring Functional Programs 345

data Expr data Expr

= Epsilon | | = Epsilon | |

Then Expr Expr | Then Expr Expr |

Star Expr Star Expr |

Plus Expr

plus e = Then e (Star e)

Fig. 8. Two data types of regular expressions

On the other hand, with the right-hand definition it is possible to treat Plus
explicitly, as in

literals (Plus e) = literals e

However, it is not just possible but necessary to define a Plus case for every
function working over the right-hand variant of Expr, thus requiring more effort
and offering more opportunity for error.6

In any particular situation, the context will be needed to determine which
approach to use. Note, however, that the transition from left to right can seen
as a refactoring: the definitions thus produced may then be transformed to yield
a more efficient version as is possible for the literals function.

6.5 Algebraic or Existential Type?

The traditional functional programming approach would represent a type of
shapes as an algebraic type, as shown in the left-hand side of Figure 9. Each
function defined over Shape will perform a pattern match over shape. Extending
the type to include a new kind of shape – Triangle, say – will require that all
functions have a case added to deal with a triangular shape.

The traditional OO approach will use subclassing or ‘polymorphism’ (in the
OO sense) to implement conditional code.7 This style is also possible in a func-
tional context, using a combination of type classes and existential types. Figure 9
shows how to achieve this for a type of shapes. It is argued that an advantage of
the right-hand representation is that it makes extension of the Shape type sim-
pler. To add a triangle shape it is necessary to add a new instance declaration;
this single point in the program will contain all the necessary declarations: in
this case calculations of the area and perimeter of a triangle.

This approach is not without its drawbacks, however. In the setting of Haskell
98 a full treatment of ‘binary methods’ becomes problematic. For example it is
impossible to define == on the existential version of Shape using the standard
definition by case analysis over the two arguments. Instead, it is necessary to

6 A more persuasive example for this transformation is a range of characters within a
regular expression: one can expand [a-z] into a|b|c|...|y|z but it is much more
efficient to treat it as a new constructor of regular expressions.

7 This is one of Fowler’s [8] refactorings: Replace Conditional with Polymorphism.

346 S. Thompson

data Shape data Shape

= Circle Float | = forall a. Sh a => Shape a

Rect Float Float

class Sh a where

area :: Shape -> Float area :: a -> Float

area (Circle f) = pi*r^2 perim :: a -> Float

area (Rect h w) = h*w

data Circle = Circle Float

perim :: Shape -> Float

perim (Circle f) = 2*pi*r instance Sh Circle

perim (Rect h w) = 2*(h+w) area (Circle f) = pi*r^2

perim (Circle f) = 2*pi*r

data Rect = Rect Float Float

instance Sh Rect

area (Rect h w) = h*w

perim (Rect h w) = 2*(h+w)

Fig. 9. Algebraic or existential type?

convert shapes to a single type (e.g. via show) to turn a case analysis over types
into a corresponding case over values.

Each representation will be preferable in certain circumstances, just as row-
major and column-major array representations are appropriate for different al-
gorithms.8 The transformation from left to right can be seen as the result of a
sequence of simpler refactorings:

– introducing the algebraic ‘subtypes’ corresponding to the constructors of the
original type: in this case Circle and Rect;

– introducing a class definition for the functions: here the class Sh;
– introducing the instance declarations for each ‘subtype’,
– and finally introducing the existential type: in this example, Shape.

6.6 Layered Data Types

Figure 10 illustrates two alternative representations of a data type of arithmetic
expressions. The left-hand approach is the more straightforward: the different
sorts of arithmetic expression are all collected into a single data type. Its disad-
vantage is that the type does not reflect the common properties of the Add, Mul
and Sub nodes, each of which has two Expr fields, and each of which is treated in
a similar way. Refactoring for ‘common code extraction’ can make this similarity
explicit.

On the other hand, in the right-hand definition, the Bin node is a general
binary node, with a field from BinOp indicating its sort. Operations which are
8 The reference to array representations is no accident: we can see the two type defi-

nitions as presenting clauses of function definitions in row- and column-major form.

Refactoring Functional Programs 347

data Expr = Lit Float | data Expr = Lit Float |

Add Expr Expr | Bin BinOp Expr Expr

Mul Expr Expr |

Sub Expr Expr data BinOp = Add | Mul | Sub

eval (Lit r) = r eval (Lit r) = r

eval (Add e1 e2) eval (Binop op e1 e2)

= eval e1 + eval e2 = evalOp op (eval e1) (eval e2)

eval (Mul e1 e2)

= eval e1 * eval e2 evalOp Add = (+)

eval (Sub e1 e2) evalOp Mul = (*)

= eval e1 - eval e2 evalOp Sub = (-)

Fig. 10. Layered data types

common to Bin nodes can be written in a general form, and the pattern matching
over the original Expr type can be reconstructed thus:

eval’ (Bin Add e1 e2) = eval’ e1 + eval’ e2

This approach has the advantage that it is, in one way at least, more straightfor-
ward to modify. To add division to the expression type, it is a matter of adding
to the enumerated type an extra possibility, Div, and adding a corresponding
clause to the definition of evalOp.

Note that moving between representations requires the transformation of all
definitions that either use or return an Expr.

6.7 Monadification

It is commonplace for Haskell programs to incorporate computational effects
of various sorts, such as input/output, exceptions and state. Haskell is a pure
language, and it is not possible simply to add side effects to the system; instead,
expressions with related actions are embedded in a monad.

A monad in Haskell is given by a constructor class, which abstracts away from
certain computational details of evaluating expressions with associated effects.
In its interface lie two functions: return which creates an expression with null
side effects, and >>= which is used to sequence and pass values between two side
effecting computations.

A natural step for the programmer is to begin by defining a pure program: one
which does no IO, for instance, and later to add IO actions to the program. This
necessitates bringing monads to the program. There are two distinct flavours of
monadification:

– a non-monadic program is ‘sequentialized’ to make it monadic; this is the
work of Erwig and his collaborators [6];

348 S. Thompson

– a program with explicit actions – such as a state ‘threaded’ through the eval-
uation – is made into a program which explicitly uses the monadic operations
return and >>=, or indeed their ‘sugared’ version, the do notation.

An example of what is required can be see in Figures 11 and 12. Figure 11 shows
a type of side-effecting expressions, and a store type. An example of the side
effects are seen in

y := (x := x+1) + (x := x+1)

Evaluating this expression in a store where x has the value 3 results in y being
assigned 9: the first sub expression has the value 4, the second 5.

Figure 12 gives two versions of an evaluator for these expressions. On the
left-hand side is an evaluator which passes the Store around explicitly. The key
case is the evaluation of Add e1 e2 where we can see that e2 is evaluated in the
store st1, which may have been modified by the evaluation of e1.

On the right-hand side is the monadic version of the code. How easy is it
to transform the left-hand side to the right? It is a combination of unfolding
and folding function definitions, combined with the transformation between a
where clause and a let. Unfolding and folding of functions defined in instance
declarations necessitates a type analysis in order to associate uses of identifiers
with their definitions. Existing work on describing monad intoduction includes
Erwig and Ren’s monadification [6] and Lämmel’s monad introduction [13].

6.8 Other Type and Data Refactorings

A number of structural refactorings apply equally well to types: it is possible to
rename, delete or duplicate a type definition, for instance. Others apply specif-
ically to types:

data Expr

= Lit Integer | -- Literal integer value

Vbl Var | -- Assignable variables

Add Expr Expr | -- Expression addition: e1+e2

Assign Var Expr -- Assignment: x:=e

type Var = String

type Store = [(Var, Integer)]

lookup :: Store -> Var -> Integer

lookup st x = head [i | (y,i) <- st, y==x]

update :: Store -> Var -> Integer -> Store

update st x n = (x,n):st

Fig. 11. Expressions and stores

Refactoring Functional Programs 349

eval :: Expr -> Store -> (Integer, Store) evalST :: Expr -> State Store Integer

eval (Lit n) st evalST (Lit n)

= (n,st) = do

return n

eval (Vbl x) st evalST (Vbl x)

= (lookup st x,st) = do

st <- get

return (lookup st x)

eval (Add e1 e2) st evalST (Add e1 e2)

= (v1+v2, st2) = do

where v1 <- evalST e1

(v1,st1) = eval e1 st v2 <- evalST e2

(v2,st2) = eval e2 st1 return (v1+v2)

eval (Assign x e) st evalST (Assign x e)

= (v, update st’ x v) = do

where v <- evalST e

(v,st’) = eval e st st <- get

put (update st x v)

return v

Fig. 12. Evaluating expressions with side-effects

Introduce a type Definition. Type synonyms make a program easier to read,
but have no semantic implication.

Introduce a newtype. Oh the other hand, a newtype is a new type, rather
than a new name for an existing type. The restrictions that Haskell 98 places
on which types may be declared as instances of classes make it necessary to
introduce newtypes for composite types as instances.

Other data-related refactorings include:

Enumerated Type. Replace a finite set of constants with an enumerated type;
that is a data type with a finite number of 0-ary constructors.

Maybe Types. Convert a Maybe type to a list or an Either; these can be seen as
transformations of particular monads, as can the conversion from (the constant
functor) Bool to a Maybe type.

Currying and Uncurrying. It is possible to group, ungroup and reorder ar-
gument lists to functions and types.

Algebraic Types. Convert between tuples and one-constructor algebraic
types; between homogeneous tuples and lists.

Type Generalisation. A type definition may refer to a particular type, as the
right-hand definition of Expr in Figure 10 refers to BinOp; this reference can

350 S. Thompson

become an additional parameter to the definition, with compensating changes
to be made to the remainder of the program.

Some of these refactorings are already implemented in HaRe; others are being
developed. The next section offers users the possibility of implementing refac-
torings for themselves.

7 Designing Your Own Refactorings: The HaRe API

The HaRe system has a layered architecture, illustrated in Figure 13. It is a
Haskell program, so ultimately depends on a Haskell compiler for implementa-
tion. The Programatica toolset [11] provides the front end functionality, and the
traversals and analyses are written using Strafunski [19].

7.1 The HaRe API

Using these libraries we have built other libraries of utilities for syntax ma-
nipulation: functions to collect all free identifiers in an expression, substitution
functions and so forth.

Two library layers are necessary because of our need to preserve program
layout and comments. In common with the vast majority of compilers, Pro-
gramatica’s abstract syntax tree (AST) omits comments, and contains only a
limited amount of source code location information.

To keep track of complete comment and layout data we work with the token
stream output by the lexical analyser, as well as the AST. When a program is
modified we update both the AST and the token stream, and we output the

Composite refactorings

Primitive refactorings

RefacUtils

RefacLocUtils

Programatica Strafunski

Fig. 13. The HaRe architecture

Refactoring Functional Programs 351

inMatch ((HsMatch loc fun pats rhs ds)::HsMatchP)

| pNTtoPN fun == pn

= case pats of

(p1:p2:ps) -> do

pats’ <-swap p1 p2 pats

return (HsMatch loc fun pats’ rhs ds)

_ -> error "Insufficient arguments to swap."

inMatch m = return m

inExp exp@((Exp (HsApp (Exp (HsApp e e1)) e2))::HsExpP)

| expToPN e == pn

= swap e1 e2 exp

inExp e = return e

Fig. 14. Swapping arguments in a pattern match and a function application

source code program by combining the information held by them both. This
necessitates that the utilities we design must manipulate both AST and token
stream; we provide two libraries to do this.

RefacUtils: this library hides the token stream manipulation, offering a set
of high-level tree manipulation functions which will manipulate syntactic frag-
ments; operations provided include insert, substitute, swap and so forth. These
are built on top of our other library, which is described next.

RefacLocUtils: this library provides the functionality to manipulate the token
stream and AST directly; it is the user’s responsibility to maintain consistency
between the two, whereas with RefacUtils this is guaranteed by the library.

In the general course of things we would expect the majority of users to work
with RefacUtils.

7.2 A Design Example

An illustrative example is given by the refactoring which swaps the first two ar-
guments of a function. The essence of this transformation is the function doSwap:

doSwap pn = applyTP (full_buTP (idTP ‘adhocTP‘ inMatch
‘adhocTP‘ inExp
‘adhocTP‘ inDecls

))

a bottom-up tree transformation which is the identity except at pattern matches,
function applications and type declarations. The adhocTP combinator of Stra-
funski is ad hoc in the sense that it applies its left hand argument except when
the right hand one can be applied; the TP suffix denotes that this is a ’type
preserving’ traversal. The details of the expression and definition manipulation
functions are in Figure 14. Note that swap will in general swap two syntactic

352 S. Thompson

fragments within an AST, and so will be usable in many contexts. The code in
Figure 14 also illustrates the Programatica ‘two level’ syntax in action: the Exp
constructors witness the recursive knot-typing.9

The code in Figure 14 makes the ‘swap’ transformation but raises an error at
any point where the function is used with less than two arguments. In a full im-
plementation this condition would be checked prior to applying the refactoring,
with two possibilities when the condition fails.

– No action is taken unless all applications have at least two arguments.
– Compensating action is taken in cases with fewer arguments. In this case it is

possible to replace these instances of a function f, say, with calls to flip f,
where flip f a b = f b a. Note that in particular this handles ‘explicit’
applications of a function of the form f $ a $ b.

Full details of the API and function-by-function Haddock [10] documentation
are contained in the HaRe distribution. Details of implementing a number of
fusion transformations are given in [20].

7.3 A Domain-Specific Language for Refactoring

Users who want to define their own refactorings can potentially interact with
the system in two quite different ways. First, it is possible to build refactorings
using the API already discussed; this required users to understand details of
Strafunski, Haskell syntax in Programatica and the API Itself.

A simpler, but more limited, approach is to provide set of combining forms,
or domain-specific language, for the existing refactorings, in analogy with the
tactic (and tactical) languages of LCF-style proof assistants such as Isabelle[21].
In more detail, users could be offered combinators for

sequencing a list of refactorings;
choice between a number of alternatives; and
repetition of a given refactoring, whilst it is applicable.

Examples of how the DSL might be used are already evident: lifting a definition
to the top level (of a module) can be effected by repeatedly lifting it one level;
the full ADT refactoring is given by sequencing a number of simpler operations.
Building this DSL is a current research topic for the project.

8 Reflecting on Refactoring

The work we have seen so far raises a number of questions and directions for
future work.
9 The two-level syntax is exemplified by a definition of lists. First a type constructor

function is defined, data L a l = Nil | Cons a l and then the recursive type is
defined to be the fixed point of L, thus: newtype List a = List (L a (List a)).
Since types cannot be recursive in Haskell, the fixed point introduces a wrapping
constructor, List here. For example, under this approach the list [2] will be given
by the term List (Cons 2 (List Nil)).

Refactoring Functional Programs 353

8.1 The Refactoring Design Space

In implementing refactorings it becomes apparent that a single refactoring can
often have a number of variants, and it is not clear which of these should be
implemented. We introduce the different sorts of variation through a series of
examples.

All, One or Some? In introducing a new definition by selecting an expression,
should the definition just replace the single identified instance of the expression,
all instances of that expression (in the module) or should the user be asked to
select precisely those instances to be replaced?

Compensation or Not? In lifting a definition to the top level, what should
be done if there are bindings used in the definition which are not in scope at
the top level? It is possible to compensate for this by adding extra parameters
(λ-lifting), or the implementation may simply disallow this refactoring.

Modify or Preserve? Generalisation as outlined in Section 4 modifies the
generalised function itself (format), changing calls to the function throughout
the project. An alternative is to define a generalised function, format’ say, and
to re-define format as an instance of this.

One advantage of this approach is that it localises the changes to a single
module. Moreover the type of the function is unchanged, so that any uses of
the function outside the project will not be compromised. A disadvantage is
the proliferation of names: the original function and its generalisation are both
visible now.

How much to Preserve? A refactoring should not change the behaviour of the
program, but underneath this requirement lie a number of possibilities. It would
be possible to require that the meaning of every definition was unchanged, but
that would preclude a generalisation, which changes not only the function but
its type as well.

More realistically, it would be possible to require that the meaning of the main
program should be unchanged. This allows for a whole variety of refactorings
which don’t preserve meaning locally, but which do work ‘under the hood’. To
give two examples:

– The semantics of Haskell draws subtle distinctions between function bindings
and lambda expressions, for instance, which are only apparent for partially-
defined data values. Arguably these should not be allowed to obstruct trans-
formations which can substantially affect program design.

– More problematic is a refactoring which replaces lists by sets, when the lists
are essentially used to store a collection of elements.10

To verify the conditions of the last transformation in a tool would be a substan-
tial challenge; this is the point at which a tool builder has to realise that the worth

10 This is illustrated in the case study [26].

354 S. Thompson

of the tool comes from implementing a set of clearly-defined, simple and useful
refactorings, rather than attempting to be comprehensive.

Not (Quite) a Refactoring? Some operations on programs are not precisely
refactorings, but can be supported by the same infrastructure, and would be of
value to programmers. Examples include:

– Add a new constructor to a data type:11 this should not only add the con-
structor but also add new clauses to definitions which use pattern matching
over this type.

– Add a field to a constructor of a data type: this would require modification
to every pattern match and use of this constructor.

– Create a new skeleton definition for a function over a data type: one clause
would have to be introduced for each constructor.

8.2 What Does the Work Say for Haskell?

Building a tool like HaRe makes us focus on some of the details of the design of
Haskell, and how it might be improved or extended.

The Correspondence Principle. At first sight it appears that there are cor-
respondences between definitions and expressions [24], thus:

Expressions Definitions

Conditional if ... then ... else ... guard
Local definition let where
Abstraction \p -> ... f p = ...
Pattern matching case x of p ... f p = ...

In fact, it is not possible to translate freely between one construct and its corre-
spondent. In general, constructs associated with definitions can be ‘open ended’
whereas expressions may not.

Take a particular case: a clause of a function may just define values for certain
arguments because patterns or guards may not exhaust all the possibilities;
values for other arguments may be defined by subsequent clauses. This is not
the case with if ... then ... else ... and case: speaking operationally,
once entered they will give a value for all possible arguments; it is not possible
to fall through to a subsequent construct.

Arguably this reflects a weakness in the design of Haskell, and could be
rectified by tightening up the form of definitions (compulsory otherwise and so
forth), but this would not be acceptable to the majority of Haskell users.

Scoped Instance Declarations. In Haskell it is impossible to prevent an in-
stance declaration from being exported by a module. The lack of scoped class

11 It is arguable that this is a refactoring, in fact. Adding a constructor only has an
effect when that constructor is used, although this could arise indirectly through use
of a derived instance of Read.

Refactoring Functional Programs 355

instances is a substantial drawback in large projects. The specific difficulty we
experienced was integrating libraries from Programatica and Strafunski which
defined subtly different instances of the same class over the same type.

The Module System. There are certain weaknesses in the module system: it is
possible to hide certain identifiers on importing a module, but it is not possible
to do the same in an export list, for instance.

Layout. In designing a tool which deals with source program layout, a major
headache has been caused by tabs, and the different way in which they can be
interpreted by different editors (and editor settings). We recommend that all
users work with spaces in their source code.

Haskell 98 / GHC Haskell. Whilst we have built a system which supports
full Haskell 98, it is apparent that the majority of larger-scale Haskell systems
use the de facto standard, GHC Haskell. We hope to migrate HaRe to GHC in
due course, particularly if we are able to use the GHC front end API currently
under development.

8.3 An Exercise for the Reader

Readers who are interested in learning more about refactoring are encouraged to
use the HaRe tool to support exploring refactoring in a particular project. Any
non-trivial project would be suitable: the game of minesweeper [25] provides a
nicely open-ended case study.

8.4 Future Work

High on our priority list is to implement refactorings which will extract ‘similar’
pieces of program into a common abstraction: this is often requested by potential
users. We also expect to migrate the system to deal with hierarchical libraries,
libraries without source code and ultimately to use the GHC front end to support
full GHC Haskell in HaRe.

8.5 Refactoring Elsewhere

These notes have used Haskell as an expository vehicle, but the principles apply
equally well to other functional languages, or at least to their pure subsets.

Programming is not the only place where refactoring can be useful. When
working on a presentation, a proof, a set of tests and so forth similar redesigns
take place. Formal support for proof re-construction could be added to proof
assistants such as Isabelle.

In a related context, there is often interest in providing evidence for a pro-
gram’s properties or behaviour. This evidence can be in the form of a proof,
test results, model checks and so forth. This raises the challenge of evolving
this evidence as the program evolves, through both refactorings and changes of
functionality.

356 S. Thompson

References

1. Warren Burton et al. Views: An Extension to Haskell Pattern Matching. Proposed
extension to Haskell; http://www.haskell.org/development/views.html .

2. The BlueJ system. http://www.bluej.org/.

3. John Brandt and Don Roberts. Refactory. http://st-www.cs.uiuc.edu/users/
brant/Refactory/.

4. Iavor S. Diatchki, Mark P. Jones, and Thomas Hallgren. A Formal Specification
for the Haskell 98 Module System. In ACM Sigplan Haskell Workshop, 2002.

5. The Eclipse project. http://www.eclipse.org/.

6. Martin Erwig and Deling Ren. Monadification of functional programs. Science of
Computer Programming, 52(1-3):101–129, 2004.

7. Robert W. Floyd. The paradigms of programming. Commun. ACM, 22(8):455–460,
1979.

8. Martin Fowler. Refactoring: Improving the Design of Existing Code. Object Tech-
nology Series. Addison-Wesley, 2000.

9. W.G. Griswold and D. Notkin. Automated assistance for program restructuring.
ACM Transactions on Software Engineering and Methodology, 2, 1993.

10. The Haddock documentation system for Haskell. http:/www.haskell.org/

haddock.

11. Thomas Hallgren. Haskell Tools from the Programatica Project (Demo Abstract).
In ACM Sigplan Haskell Workshop, 2003.

12. The HaRe system. http://www.cs.kent.ac.uk/projects/refactor-fp/hare.

html.

13. R. Lämmel. Reuse by Program Transformation. In Greg Michaelson and Phil
Trinder, editors, Functional Programming Trends 1999. Intellect, 2000. Selected
papers from the 1st Scottish Functional Programming Workshop.

14. Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular
interpreters. In 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages: San Francisco, California. ACM Press, 1995.

15. Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Proceedings of the Workshop on Types in
Language Design and Implementation. ACM, 2003.

16. Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proceedings of International Conference on Functional
Programming 2004. ACM Press, 2004.

17. Huiqing Li, Claus Reinke, and Simon Thompson. Tool Support for Refactoring
Functional Programs. In ACM Sigplan Haskell Workshop, 2003.

18. Huiqing Li, Claus Reinke, and Simon Thompson. Progress on HaRe: the Haskell
Refactorer. Poster presentation at the International Conference on Functional
Programming, Snowbird, Utah. ACM, 2004.

19. Ralf Lämmel and Joost Visser. Generic Programming with Strafunski, 2001.
http://www.cs.vu.nl/Strafunski/.

20. Chau Nguyen Viet. Transformation in HaRe. Technical report, Computing Labo-
ratory, University of Kent, 2004. http://www.cs.kent.ac.uk/pubs/2004/2021.

21. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof
assistant for Higher-Order Logic. Springer, 2002.

22. William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign, 1992.

Refactoring Functional Programs 357

23. Daniel J. Russell. FAD: Functional Analysis and Design Methodology. PhD thesis,
University of Kent, 2000.

24. Robert D. Tennent. Principles of Programming Languages. Prentice Hall, 1979.
25. Simon Thompson. Minesweeper. http://www.cs.kent.ac.uk/people/staff/sjt/

craft2e/Games/.
26. Simon Thompson and Claus Reinke. A Case Study in Refactoring Functional

Programs. In Brazilian Symposium on Programming Languages, 2003.
27. The Unified Modeling Language. http://www.uml.org/.
28. Philip Wadler. Views: a way for pattern-matching to cohabit with data abstraction.

In Proceedings of 14th ACM Symposium on Principles of Programming Languages.
ACM Press, January 1987. (Revised March 1987).

Author Index

Achten, Peter 210

Dijkstra, Atze 1

Hughes, John 73

McBride, Conor 130

Pardo, Alberto 171
Plasmeijer, Rinus 210, 245
Pope, Bernard 273

Swierstra, S. Doaitse 1

Thiemann, Peter 309

Thompson, Simon 331

van Eekelen, Marko 210

van Weelden, Arjen 210, 245

	Frontmatter
	Typing Haskell with an Attribute Grammar
	Programming with Arrows
	Epigram: Practical Programming with Dependent Types
	Combining Datatypes and Effects
	GEC: A Toolkit for Generic Rapid Prototyping of Type Safe Interactive Applications
	A Functional Shell That Operates on Typed and Compiled Applications
	Declarative Debugging with Buddha
	Server-Side Web Programming in WASH
	Refactoring Functional Programs
	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

